Gröbner basis. A new algorithm for computing the Frobenius number
Résumé
Let consider $n$ natural numbers $a_1 ,\ldots , a_{n} $. Set $A=K[t^{a_1}, \ldots , t^{a_n}]=K[{x_1}, \ldots , {x_n}]/I$.
Our aim is
to describe explicitly:
* The \gbb of $I$ for the reverse lexicographic order to $x_n,\ldots ,x_1$, without using Buchberger's algorithm.
* $\ini{I} $ for the reverse lexicographic order to $x_n,\ldots ,x_1$.
* $A$ as a $K[t^{ a_1 }]$-module.
* The Apéry set and the Frobenius number.
The implementation of this algorithm "frobenius-number-mm" can be downloaded in \hfill\break
https://www-fourier.ujf-grenoble.fr/~morales/frobenius-number-mm
Origine | Fichiers produits par l'(les) auteur(s) |
---|