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Université Joseph Fourier, B.P.74, 38402 Saint-Martin d’Hères cedex, France

and ESPE Université de Lyon, France
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Abstract.
1

Let consider n natural numbers a1, . . . , an. Set A = K[ta1 , . . . , tan ] = K[x1, . . . , xn]/I.
Our aim is to describe explicitly:

1. The Gröbner basis of I for the reverse lexicographic order to xn, . . . , x1, without using
Buchberger’s algorithm.

2. in (I) for the reverse lexicographic order to xn, . . . , x1.

3. A as a K[ta1 ]-module.

4. The Apéry set and the Frobenius number.

The implementation of this algorithm ”frobenius-number-mm” can be downloaded in
https://www-fourier.ujf-grenoble.fr/ morales/frobenius-number-mm

Introduction

In the sequel we shall use the following notations. Let K be a field, A be a set of n
natural numbers A = {a1, . . . , an} ⊂ N. S the numerical semigroup generated by a1, . . . , an,
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that is S = {k1a1 + . . . knan|ki ∈ N}. We consider the one-dimensional toric affine ring
A = K[ta1 , . . . , tan ] ⊂ K[t], that is A = K[tk|k ∈ S] := K[S].
The ring A = K[ta1 , . . . , tan ] ⊂ K[t] has a presentation as a quotient of the polynomial ring
K[x1, . . . , xn], as follows:
Let ϕ : K[x1, . . . , xn] → K[ta1 , . . . , tan ] defined by

x1 7→ ta1

...

xn 7→ tan

Let I(S) be the kernel of ϕ, that is the ideal ideal formed by all polynomials of K[x1, . . . , xn]
such that P (ta1 , . . . , tan) = 0.

The ideal I(S) has a system of generators formed by binomials which are differences of
two monomials with coefficient 1. Note that if we graded the polynomial ring K[x1, . . . , xn]
by setting deg(xi) = ai, the morphism ϕ is homogeneous, and the ideal I(S) is homogeneous.

The following theorem is well known, we give here a short proof for the commodity of
the reader.

Theorem 0.1. Suppose that a1, . . . , an are relatively prime numbers then any large integer
belongs to S.

Proof. Suppose that n = 2, By Bézout’theorem there exist relative integer numbers s1, s2
such that s1a1+s2a2 = 1. We can assume that s1 > 0, s2 < 0. Let k > 0 big enough we can
write k = qa2+r with 0 ≤ r < a2, which implies k = qa2+r(s1a1+s2a2) = rs1a1+(q+rs2)a2.
Since k is large enough (q + rs2) > 0, hence k ∈ S.

A similar argument works for n > 2.

Definition 0.2. Suppose that a1, . . . , an are relatively prime numbers, the biggest integer
number in N \ S is called the Frobenius number, we denote it by g(S). More generally if
gcd(a1, . . . , an) = λ then the biggest integer in λN \ S is called the Frobenius number, we
denote it by g(S).

Suppose that gcd(a1, . . . , an) = λ, let S̃ be the semigroup generated by a1
λ , . . . , anλ .

We have that g(S) = λg(S̃). The problem of computing the Frobenius number is open
since the end of 19th Century, for n = 2 there is a formula (see section 1), for n = 3 a
formula using Euclide’s algorithm for gcd was given in [8]. In 1987, in [6] the first author
translate for the first time the Frobenius problem into an algebraic setting, showing that the
Frobenius number is the degree of the Hilbert-Poincaré series written as a rational fraction,
moreover By using [8], in the case n = 3 the Hilbert-Poincaré series is completely described
by an algorithm using only Euclide’s algorithm for gcd, that is of complexity ln(a). An
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implementation in Pascal was done by the first author to compute a system of generators
of the affine monomial curve K[ta, tb, tc] and its projective closure, which computed the
Frobenius number for three natural numbers. In recent works [3] and [9], the computation
of Frobenius number, is related to the computation of the Hilbert-Poincaré series. More
precisely, in [9] the author deduces the Frobenius number from a Gröbner basis of the ideal
I(S). We recall that the computation of a Gröbner basis is double exponential complexity
by using the Buchberger algorithm.

In this paper we study the Frobenius problem from algebraic point of view, this allows
us to give a conceptual frame to our algorithm. Our algorithm determines completely the
semigrup S and solve the membership problem, that is to decide if an integer number belong
to S. We develop a stand alone algorithm which computes a Gröbner basis of the ideal I(S),
they are extension of the previous work and algorithm by the first author in [6], [7]. For
fixed n the algorithm presented here seems to be polynomial in a, it is implemented and can
be downloaded in https://www-fourier.ujf-grenoble.fr/ morales/. Note that because of the
limitation of the Compiler for the moment the software works only for numbers less than
1000, but an implementation in Mathematica should allow to compute with any number of
digits.

In the first section we introduce the Apéry set and we prove some known results.
In the second section we present the connection between Hilbert-Poincaré series and the

Frobenius number. This connection was established by the first author for the first time in
[6].

In the third section we introduce Noether normalization and we prove the connection
between Apéry sets and Noether normalization.

In the last section we develop our algorithm.
In our work in preparation, we will extend the above algorithm to compute Gröbner

basis of any simplicial monomial ideal.

1 Frobenius number, Apéry set

Definition 1.1. Suppose that a1 is the smallest among a1, . . . , an. The Apéry set Ap(S, a1)
of the semigroup S with respect to a1 is the set Ap(S, a1) := {s ∈ S|s− a1 /∈ S}.

Remark 1.2. The definition of Apéry set makes sense even if the numbers a1, . . . , an are not
relatively prime numbers. Suppose that gcd(a1, . . . , an) = λ, let S̃ be the semigroup gen-
erated by a1

λ , . . . , anλ . We have that Ap(S, a1) is obtained from Ap(S̃, a1λ ) by multiplication
by λ.

Theorem 1.3. (Apéry [1])Suppose that a1, . . . , an are natural numbers such that gcd(a1, . . . , an) =
λ.
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1. Ap(S, a1) := {λw0, . . . , λwa1
λ
−1}, where wi is the smallest element is S̃ congruent to

i mod a1
λ .

2. g(S) = max {s − a1|s ∈ Ap(S, a1)}.

Proof. 1. We can assume that a1, . . . , an are relatively prime numbers.
First we prove that for all i = 0, . . . , a1 − 1, wi belongs to Ap(S, a1). Suppose that it
is not true, that is wi − a1 ∈ S for some i = 0, . . . , a1 − 1. It follows that wi− a1 < wi

and both wi − a1, wi ∈ S are congruent to i mod a1. This is a contradiction with the
definition of wi. As a consequence Ap(S, a1) has at least a1 elements in order to prove
the claim it will be enough to show that Ap(S, a1) has exactly a1 elements. Suppose
that card(Ap(S, a1)) > a1, then there exists two elements s1 < s2 in Ap(S, a1) such
that both s1 < s2 are congruent to i mod a1 for some i = 0, . . . , a1 − 1, that is
s2 = s1 + ka1 with k > 0 a natural integer, hence s2 6∈ Ap(S, a1), a contradiction.

2. Let h ∈ N such that h > max {s − a1|s ∈ Ap(S, a1)}, since h is congruent to i
mod a1 for some i = 0, . . . , a1 − 1, we can write h = wi + αa1, with α ∈ Z, hence
h = (wi − a1) + (α + 1)a1, since h > (wi − a1) we have (α + 1) > 0, hence α ≥ 0,
which implies that h ∈ S.

Corollary 1.4. Let n = 2 suppose that a1, a2 are relatively prime numbers then g(S) =
(a1 − 1)(a2 − 1)− 1.

Proof. We give a combinatorial proof using Apéry sets. Since a1, a2 are relatively prime
numbers, we have

Ap(S, a1) := {0, a2, . . . , (a1 − 1)a2},

hence g(S) = (a1 − 1)(a2)− a1 = (a1 − 1)(a2 − 1)− 1

For n = 2, we will give an algebraic proof later.

Corollary 1.5. For i = 0, . . . , a1 − 1 let Si = {s ∈ S|s ≡ imod a1}. Then S is the disjoint
union of S0, . . . Sa1−1.

2 Frobenius number and Hilbert-Poincaré series

Let R := K[x1, . . . , xn] be the polynomial ring graded by the weights deg x1 = a1, . . . ,deg xn =
an, and I ⊂ K[x1, . . . , xn] be a graded ideal. Let B = R/I, the Hilbert-function of B is
defined by HB(l) = dimK Bl, for all l ∈ Z, and the Hilbert-Poincaré series of B:

PB(u) =
∑

l∈Z

HB(l)u
l.
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We recall the following Theorem from [6]

Theorem 2.1. Let R := K[x1, . . . , xn] be the polynomial ring graded by the weights deg x1 =
a1, . . . ,deg xn = an, I ⊂ K[x1, . . . , xn] be a graded ideal and B := R/I. Then

1. The Hilbert-Poincaré series of B is a rational function:

PB(u) =
QB(u)

(1− ua1)(1− ua2) . . . (1− uan)
,

where QB(u) is a polynomial on u.

2. There exists h polynomials with integer coefficients ΦHB,0(l), . . . ,ΦHB,h(l) such that
HB(lh+ i) = ΦHB ,i(l) for 0 ≤ i ≤ h− 1 and l large enough. We recall that the index
of regularity of the Hilbert function is the biggest integer l such that HB(l) 6= ΦHB ,i(l),
for any i.

3. The index of regularity of the Hilbert function equals the degree of the rational fraction
defining the Poincaré series.

Corollary 2.2. [5] Let S be the semigroup generated by a1, . . . , an, and A = K[ta1 , . . . , tan ] ⊂
K[t]. The Frobenius number g(S) coincides with the degree of the rational fraction defining
the Poincaré series PA(u) by the theorem 2.1.

Proof. The Hilbert function of A is given by

HA(l) =

{
1 if l ∈ S

0 if l /∈ S.

In particular if a1, . . . , an are relatively prime, HA(l) = 1 for l large enough, and the
Frobenius number coincides with the index of regularity of the Hilbert function HA(l), so
it is the degree of the rational fraction defining the Poincaré series PA(u).

3 Gröbner basis

Let a1, . . . , an be natural numbers, λ = gcd(a1, . . . , an). We denote by S (resp. S̃) the
semigroup generated by a1, . . . , an (resp. by a1/λ, . . . , an/λ). Note that the semigroups
rings K[S],K[S̃] are isomorphic.

Let R := K[x1, . . . , xn] be the polynomial ring graded by the weights deg x1 = a1, . . . ,deg xn =
an. We consider ≺degrevlex the degree reverse lexicographical order with xn, . . . , x1. The
first statement of the following theorem is an extension to the quasi-homogeneous case of
[4].
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Theorem 3.1. Let A := K[ta1 , . . . , tan ] ≃ R/I(S).

1. The polynomial ring K[x1] ⊂ A is a Noether normalization. Moreover let G(S) be a
Gröbner basis for ≺revlex and in(I(S)) be the initial ideal then

A ≃ ⊕
x
k2
2

...xkn
n /∈in(I(S))

K[ta1 ][tk2a2+...+knan ].

2. The Hilbert-Poincaré series is given by:

PA(t) =

∑
x
k2
2

...xkn
n /∈in(I(S))

tk2a2+...+knan

1− ta1

3. The Frobenius number g(S̃) =
max {k2a2+...+knan|x

k2
2

...xkn
n /∈in(I(S))}−a1

λ .

Proof. 1. We have that for any i = 2, . . . , n, (tai)a1 − (ta1)ai = 0, so K[ta1 , . . . , tan ]
is integral over K[ta1 ], both rings have dimension one so K[ta1 ] ⊂ K[ta1 , . . . , tan ] is
a Noether normalization, also both rings are Cohen-Macaulay. By the Auslander-
Buschsbaum formula we get that K[ta1 , . . . , tan ] is a free K[ta1 ]-module. This is the
same to say that R/I(S) is a free K[x1]-module. Since R/I(S) is a graded K[x1]-
module, we can use Nakayama’s lemma, hence any K−basis of R/(I(S), x1) gives us a
basis of R/I(S) as a free K[x1]-module. Let G(S) be a Gröbner basis for ≺revlex and
in(I(S)) be the initial ideal, by definition of ≺degrevlex, x1 does not divides any of the
elements in in(I(S)). On the other hand Macaulay’s theorem [2][Theorem 15.3]says us
that the set of monomials not in in(I(S)) is a basis of R/I(S) as a free K[x1]-module.

2. It is clear that the Hilbert-Poincaré series ofK[ta1 ] is 1
1−ta1 , the Hilbert-Poincaré series

is an additive function, hence we have the formula for the Hilbert-Poincaré series of
A.

3. By 2.1 The Frobenius number of S is the degree of the Hilbert-Poincaré series of A.

We have the following consequence which will be important for our algorithm:

Corollary 3.2. We have that

1. Ap(S, a1) = {k2a2 + . . .+ knan|x
k2
2 . . . xknn /∈ in(I(S))}. In particular

card{xk22 . . . xknn /∈ in(I(S))} =
a1

gcd(a1, . . . , an)
.

2. Let s ∈ Ap(S, a1), such that s = k2a2+ . . .+knan and xk22 . . . xknn /∈ in(I(S)). Suppose
that s = l2a2 + . . .+ lnan for some natural numbers l2, . . . , ln, then xk22 . . . xknn ≺revlex

xl22 . . . xlnn .
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Proof. We can assume that gcd(a1, . . . , an) = 1.

1. By the above theorem K[ta1 , . . . , tan ] ≃ ⊕si∈HK[ta1 ][tsi ] where H = {k2a2 + . . . +
knan|x

k2
2 . . . xknn /∈ in(I(S))}, now we prove that H = Ap(S, a1). Let s ∈ H suppose

that s /∈ Ap(S, a1), hence s− a1 ∈ S, by the above decomposition there exists unique
si ∈ H, l ∈ N such that s − a1 = si + la1 that is s = si + (l + 1)a1 a contradiction
to the direct sum decomposition. Reciprocally, let s ∈ Ap(S, a1), then there exists
unique si ∈ H, l ∈ N such that s = si + la1, if l > 0 then s− a1 ∈ S a contradiction ,
hence s = si ∈ H.

2. If s = l2a2+ . . .+ lnan with (k1, . . . , kn) 6= (l1, . . . , ln) and xl22 . . . xlnn ≺revlex xk22 . . . xknn
then xk22 . . . xknn ∈ in(I(S)), a contradiction.

Example 3.3. Let n = 2, and a1, a2 be natural numbers, λ = gcd(a1, a2), we have that

K[ta1 , ta2 ] ≃ K[x1, x2]/(x
a1/λ
2 − x

a2/λ
1 ) it is clear that that x

a1/λ
2 − x

a2/λ
1 is a Gröbner

basis of the ideal (x
a1/λ
2 − x

a2/λ
1 ) for ≺revlex. We have in(x

a1/λ
2 − x

a2/λ
1 ) = (x

a1/λ
2 ), hence

K[ta1 , ta2 ] =≃ ⊕
a1/λ−1
k=0 K[ta1 ][tka2 ], the Poincaré series is given by: PA(t) =

∑a1/λ−1
k=0 tka2

1− ta1
.

if a1, a2 are coprime then the Frobenius number is (a1 − 1)a2 − a1 = (a1 − 1)(a2 − 1)− 1.

4 Frobenius number, Hilbert-Poincaré series, the case n = 3

This section is a short version of [6] and [7].
Let consider three natural numbers a, b, c and S be the semigroup generated by a, b, c.

First, remark that any solution α := (u, v, w) of the Diophantine equation ua+ vb+wc = 0
gives rise to a binomial in the ideal I(S) in the following way:
we write the vector α = α+ − α−, where the components of both α+, α− are nonnegative
then xα+ − xα− ∈ I(S), where xα+ = x

α+1

1 x
α+2

2 x
α+3

3 . Reciprocally if xα − xβ ∈ I(S)
and xα,xβ have not common factors then (u, v, w) := α − β is a solution of the equation
ua+ vb+ wc = 0.
Second, it is clear that find solutions (u, v, w) of the Diophantine equation ua+ vb+wc = 0
is equivalent to find solutions (s, p, r) of the Diophantine equation sb− pc = ra.
Let s0 be the smallest natural number such that (s0, 0, r0) is solution of the equation sb−pc =
ra. We set p0 = 0.
Let p1 be the smallest natural number such that (s1, p1, r1) is solution of the equation

sb − pc = ra, with 0 ≤ s1 < s0. Note that s0 = a
gcd(a,b) and p1 = gcd(a,b)

gcd(a,b,c) . The numbers
s1 can be got from the extended Euclide’s algorithm for the computation of the greatest
common divisor of a, b.
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Let consider the Euclides’ algorithm with negative rest:




s0 = q2s1 − s2
s1 = q3s2 − s3
. . . = . . .

sm−1 = qm+1sm
sm+1 = 0

qi ≥ 2 , si ≥ 0 ∀i.
Let define the sequences: pi, ri (0 ≤ i ≤ m+ 1) , by:

pi+1 = piqi+1 − pi−1 , ri+1 = riqi+1 − ri−1 , (1 ≤ i ≤ m).

Note that from [7] we have for i = 0, . . . ,m that sipi+1 − si+1pi = s0p1 = a
gcd(a,b,c) . Let µ

the unique integer such that rµ > 0 ≥ rµ+1.

Theorem 4.1. ([5], [6] and [7]) The set

x
sµ
2 − x

rµ
1 x

pµ
3 , x

pµ+1

3 − x
−rµ+1

1 x
sµ+1

2 , x
sµ−sµ+1

2 x
pµ+1−pµ
3 − x

rµ−rµ+1

1

is a Gröbner basis of I(S) for ≺revlex with x3, x2, x1. In particular in(I(S) = (x
sµ
2 , x

pµ+1

3 , x
sµ−sµ+1

2 x
pµ+1

3 ),
and

N
2 \ exp(in(I(S)) = {(k, l) ∈ N

2|0 ≤ k < sµ − sµ+1, 0 ≤ l < pµ+1}∪

{(k, l) ∈ N
2|sµ − sµ+1 ≤ k < sµ, 0 ≤ l < pµ+1 − pµ}.

K[ta, tb, tc] ≃ ⊕(k,l)∈N2\exp(in(I(S))K[ta][tkb+lc].

In particular the Poincaré series is given by:

PA(t) =

∑
(k,l)∈N2\exp(in(I(S)) t

kb+lc

1− ta

and if the numbers a, b, c are relatively prime the Frobenius number is

g(S) = max {kb+ lc|(k, l) ∈ N
2 \ exp(in(I(S))} − a1.

Proof. we can give a new and shorter proof than the one given in the general case in [7]. We
can assume that the numbers a, b, c are relatively prime. Let consider the three elements of
I(S): x

sµ
2 − x

rµ
1 x

pµ
3 , x

pµ+1

3 − x
−rµ+1

1 x
sµ+1

2 , x
sµ−sµ+1

2 x
pµ+1−pµ
3 − x

rµ−rµ+1

1 . It then follows that

J := (x
sµ
2 , x

pµ+1

3 , x
sµ−sµ+1

2 x
pµ+1

3 ) ⊂ in(I(S). Now we count the numbers of monomial not in
J ,

card(N2 \ exp(J)) = (sµ − sµ+1)pµ+1 + sµ+1(pµ+1 − pµ) = sµpµ+1 − sµ+1pµ = a.

On the other hand by Corollary 3.2, card(N2 \ exp(in(I(S))) = a this implies in(I(S) = J ,

hence the set x
sµ
2 − x

rµ
1 x

pµ
3 , x

pµ+1

3 − x
−rµ+1

1 x
sµ+1

2 , x
sµ−sµ+1

2 x
pµ+1−pµ
3 − x

rµ−rµ+1

1 is a Gröbner
basis of I(S) for ≺revlex with x3, x2, x1. The other claims follows from the Theorem 3.1
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5 Algorithm for the case n ≥ 4

For n = 3, we have seen that the algorithm use only Euclide’s algorithm. Let n ≥ 4. Let
a1, . . . , an be relatively prime natural numbers, S the semigroup generated by a1, . . . , an. Let
R := K[x1, . . . , xn] be the polynomial ring graded by the weights degx1 = a1, . . . ,deg xn =
an. We consider ≺degrevlex the degree reverse lexicographical order with xn, . . . , x1, A =
K[ta1 , . . . , tan ] ≃ R/I(S).

The algorithm is inductive on n.

Algorithm 5.1. Frobenius MM-DD:
Input: a1, . . . , an
Ouput: The Grobner basis of I(S), the Noether decomposition, the Apéry set of S

with respect to a1. The Frobenius number of S.
Begin

1. For any subset T ⊂ {x1, . . . , xn} such that x1 ∈ T and 3 ≤ card(T ) ≤ n− 1 compute
the Noether decomposition as in the Theorem 3.1, where we assume that the ring
K[T ] is provided with the induced order of ≺revlex.

2. For i = 2, . . . , n let Si the semigroup generated by A\{ai}. Let Gi be a Gröbner basis
for the semigroup ringK[Si] as a quotient ofK[x1, . . . , xi−1, xi+1, . . . , xn]. For any two
distinct integers i, k ∈ {2, . . . , n}, let gk,i be the small integer such that x

gk,i
k ∈ in(Gi).

Let gk = min {gk,i|i = 2, . . . , n, i 6= k}. In order to look for monomials not in in(I(S)

we need only to check for monomials xk22 . . . xknn with ki < gi. Moreover by 3.2 we
have card{xk22 . . . xknn /∈ in(I(S))} = a1.

3. For i = 2, . . . , n let Si the semigroup generated by A \ {ai}. Let Gi be a Gröbner
basis for the semigroup ring K[Si] as a quotient of K[x1, . . . , xi−1, xi+1, . . . , xn] for
the induced order of ≺revlex. For any two distinct integers i, k ∈ {2, . . . , n}, let gk,i be
the small integer such that x

gk,i
k ∈ in(Gi), and gk = max {gk,i|i 6= k}

4. For i = 2 to i = n, and for s = 1 to s = gi check if the monomial xsi ∈ in(I(S). Let
gi the small integer s such that xsi ∈ in(I(S).

5. For s = 0 to s = g2+ . . .+ gn− (n− 1) and any monomial M := xk22 . . . xknn , such that
ki < gi for all i = 2, . . . , n, check if the monomial M ∈ in(I(S).

6. In both cases, by a simple test we can assume that there is not a proper monomial
M ′ ∈ in(I(S) dividing M .

7. The algorithm has a second stop since the number of monomials not in in(I(S) is
exactly a1.
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End (of the algorithm).

Let precise the consistence of the steps 4 and 5, since they are similar we only prove the
step 5:

Let supp(M) be the set of integers i such that xi dividesM , and supp(M) := {1, . . . , n}\
supp(M). Let Ssupp(M) be the semigroup generated by all the numbers ai such that ai ∈

supp(M). M ∈ in(I(S) if and only if there is a binomial xk22 . . . xknn −Πi∈supp(M)x
li
i ∈ I(S)

such that Πi∈supp(M)x
li
i ≺revlex xk22 . . . xknn . This is equivalent to show that there exists

∑
i∈supp(M) liai ∈ Ssupp(M) such that k2a2+. . .+knan =

∑
i∈supp(M) liai and Πi∈supp(M)x

li
i ≺revlex

xk22 . . . xknn .
Let λM = gcd{ai|i ∈ supp(M), and a1 = a1

λM
. By the theorem 3.1 and its corollary 3.2

we have K[Ssupp(M)] ≃ ⊕a1−1
i=0 K[ta1 ][twi ], where wi ∈ Ap(Ssupp(M), a1), wi ≡ λM imod a1.

Let ρ = k2a2 + . . . + knanmod a1. If ρ /∈ λMN then xk22 . . . xknn /∈ in(I(S)). Otherwise
k2a2 + . . . + knan = w ρ

λM

+ αa1, with α ∈ Z. Let w ρ

λM

=
∑

i∈supp(M)
liai such that

Π
i∈supp(M)

xlii /∈ in(I(S
supp(M)

)). We have three cases:

1. If α < 0 then xk22 . . . xknn /∈ in(I(S)).

2. If α > 0 then the binomial xk22 . . . xknn −xα1Πi∈supp(M)
xlii ∈ I(S) and Π

i∈supp(M)
xlii ≺revlex

xk22 . . . xknn , so xk22 . . . xknn ∈ in(I(S).

3. If α = 0, let j the smallest number such that lj > 0,

(a) if j < i for any i ∈ supp(M) then as above xk22 . . . xknn −Πi∈supp(M)x
li
i ∈ I(S) and

Πi∈supp(M)x
li
i ≺revlex xk22 . . . xknn , so xk22 . . . xknn ∈ in(I(S).

(b) If j > i for some i ∈ supp(M) , then we have xk22 . . . xknn ≺revlex Πi∈supp(M)x
li
i .

On the other hand if
∑

i∈supp(M) liai =
∑

i∈supp(M) l
′
iai for some other num-

bers l′i we have Π
i∈supp(M)

xlii ≺revlex Π
i∈supp(M)

x
l′i
i because Π

i∈supp(M)
xlii /∈

in(I(S
supp(M)

)). Hence xk22 . . . xknn ≺revlex Π
i∈supp(M)

x
l′i
i for any natural inte-

gers l′i, i ∈ supp(M), such that k2a2+ . . .+knan =
∑

i∈supp(M)
l′iai, which implies

that xk22 . . . xknn /∈ in(I(S).

Our algorithm is complete.

Remark 5.2. Since the number of monomials not in in(I(S) is exactly a1, we will have that
gk,i, gi, gi are strictly bounded above by a1. Moreover by the same reason g2+. . .+gn−(n−1)
is strictly bounded above by a1, hence the number of tests in the step 4 of the algorithm is
at most a21 and the number of tests in the step 5 of the algorithm is at most a1

(a1+n−2
n−1

)
.
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