Gröbner basis. A new algorithm for computing the Frobenius number

Marcel Morales, Dung Nguyen Thi

To cite this version:

Marcel Morales, Dung Nguyen Thi. Gröbner basis. A new algorithm for computing the Frobenius number. 2015. hal-01212986v1

HAL Id: hal-01212986
https://hal.science/hal-01212986v1
Preprint submitted on 7 Oct 2015 (v1), last revised 14 Dec 2015 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Gröbner basis. A new algorithm for computing the Frobenius number

Marcel Morales
Institut Fourier, Laboratoire de Mathématiques associé au CNRS, UMR 5582, Université Joseph Fourier, B.P.74, 38402 Saint-Martin d'Hères cedex, France and ESPE Université de Lyon, France marcel.morales@ujf-grenoble.fr

Nguyen Thi Dung
Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam

Abstract. ${ }^{1}$

Let consider n natural numbers a_{1}, \ldots, a_{n}. Set $A=K\left[t^{a_{1}}, \ldots, t^{a_{n}}\right]=K\left[x_{1}, \ldots, x_{n}\right] / I$. Our aim is to describe explicitly:

1. The Gröbner basis of I for the reverse lexicographic order to x_{n}, \ldots, x_{1}, without using Buchberger's algorithm.

2 . in (I) for the reverse lexicographic order to x_{n}, \ldots, x_{1}.
3. A as a $K\left[t^{a_{1}}\right]$-module.
4. The Apéry set and the Frobenius number.

The implementation of this algorithm "frobenius-number-mm" can be downloaded in https://www-fourier.ujf-grenoble.fr/ morales/frobenius-number-mm

Introduction

In the sequel we shall use the following notations. Let K be a field, \mathcal{A} be a set of n natural numbers $\mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{N}$. S the numerical semigroup generated by a_{1}, \ldots, a_{n},

[^0]that is $S=\left\{k_{1} a_{1}+\ldots k_{n} a_{n} \mid k_{i} \in \mathbb{N}\right\}$. We consider the one-dimensional toric affine ring $A=K\left[t^{a_{1}}, \ldots, t^{a_{n}}\right] \subset K[t]$, that is $A=K\left[t^{k} \mid k \in S\right]:=K[S]$.
The ring $A=K\left[t^{a_{1}}, \ldots, t^{a_{n}}\right] \subset K[t]$ has a presentation as a quotient of the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$, as follows:
Let $\varphi: K\left[x_{1}, \ldots, x_{n}\right] \rightarrow K\left[t^{a_{1}}, \ldots, t^{a_{n}}\right]$ defined by
\[

$$
\begin{array}{rll}
x_{1} & \mapsto & t^{a_{1}} \\
& \vdots \\
x_{n} & \mapsto & t^{a_{n}}
\end{array}
$$
\]

Let $I(S)$ be the kernel of φ, that is the ideal ideal formed by all polynomials of $K\left[x_{1}, \ldots, x_{n}\right]$ such that $P\left(t^{a_{1}}, \ldots, t^{a_{n}}\right)=0$.

The ideal $I(S)$ has a system of generators formed by binomials which are differences of two monomials with coefficient 1. Note that if we graded the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$ by setting $\operatorname{deg}\left(x_{i}\right)=a_{i}$, the morphism φ is homogeneous, and the ideal $I(S)$ is homogeneous.

The following theorem is well known, we give here a short proof for the commodity of the reader.

Theorem 0.1. Suppose that a_{1}, \ldots, a_{n} are relatively prime numbers then any large integer belongs to S.

Proof. Suppose that $n=2$, By Bézout'theorem there exist relative integer numbers s_{1}, s_{2} such that $s_{1} a_{1}+s_{2} a_{2}=1$. We can assume that $s_{1}>0, s_{2}<0$. Let $k>0$ big enough we can write $k=q a_{2}+r$ with $0 \leq r<a_{2}$, which implies $k=q a_{2}+r\left(s_{1} a_{1}+s_{2} a_{2}\right)=r s_{1} a_{1}+\left(q+r s_{2}\right) a_{2}$. Since k is large enough $\left(q+r s_{2}\right)>0$, hence $k \in S$.

A similar argument works for $n>2$.
Definition 0.2. Suppose that a_{1}, \ldots, a_{n} are relatively prime numbers, the biggest integer number in $\mathbb{N} \backslash S$ is called the Frobenius number, we denote it by $g(S)$. More generally if $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=\lambda$ then the biggest integer in $\lambda \mathbb{N} \backslash S$ is called the Frobenius number, we denote it by $g(S)$.

Suppose that $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=\lambda$, let \widetilde{S} be the semigroup generated by $\frac{a_{1}}{\lambda}, \ldots, \frac{a_{n}}{\lambda}$. We have that $g(S)=\lambda g(\widetilde{S})$. The problem of computing the Frobenius number is open since the end of 19th Century, for $n=2$ there is a formula (see section 1), for $n=3$ a formula using Euclide's algorithm for gcd was given in [8]. In 1987, in [6] the first author translate for the first time the Frobenius problem into an algebraic setting, showing that the Frobenius number is the degree of the Hilbert-Poincaré series written as a rational fraction, moreover By using [8], in the case $n=3$ the Hilbert-Poincaré series is completely described by an algorithm using only Euclide's algorithm for gcd, that is of complexity $\ln (a)$. An
implementation in Pascal was done by the first author to compute a system of generators of the affine monomial curve $K\left[t^{a}, t^{b}, t^{c}\right]$ and its projective closure, which computed the Frobenius number for three natural numbers. In recent works [3] and [9], the computation of Frobenius number, is related to the computation of the Hilbert-Poincaré series. More precisely, in [9] the author deduces the Frobenius number from a Gröbner basis of the ideal $I(S)$. We recall that the computation of a Gröbner basis is double exponential complexity by using the Buchberger algorithm.

In this paper we study the Frobenius problem from algebraic point of view, this allows us to give a conceptual frame to our algorithm. Our algorithm determines completely the semigrup S and solve the membership problem, that is to decide if an integer number belong to S. We develop a stand alone algorithm which computes a Gröbner basis of the ideal $I(S)$, they are extension of the previous work and algorithm by the first author in [6], [7]. For fixed n the algorithm presented here seems to be polynomial in a, it is implemented and can be downloaded in https://www-fourier.ujf-grenoble.fr/ morales/. Note that because of the limitation of the Compiler for the moment the software works only for numbers less than 1000, but an implementation in Mathematica should allow to compute with any number of digits.

In the first section we introduce the Apéry set and we prove some known results.
In the second section we present the connection between Hilbert-Poincaré series and the Frobenius number. This connection was established by the first author for the first time in [6].

In the third section we introduce Noether normalization and we prove the connection between Apéry sets and Noether normalization.

In the last section we develop our algorithm.
In our work in preparation, we will extend the above algorithm to compute Gröbner basis of any simplicial monomial ideal.

1 Frobenius number, Apéry set

Definition 1.1. Suppose that a_{1} is the smallest among a_{1}, \ldots, a_{n}. The Apéry set $\operatorname{Ap}\left(S, a_{1}\right)$ of the semigroup S with respect to a_{1} is the set $\operatorname{Ap}\left(S, a_{1}\right):=\left\{s \in S \mid s-a_{1} \notin S\right\}$.
Remark 1.2. The definition of Apéry set makes sense even if the numbers a_{1}, \ldots, a_{n} are not relatively prime numbers. Suppose that $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=\lambda$, let \widetilde{S} be the semigroup generated by $\frac{a_{1}}{\lambda}, \ldots, \frac{a_{n}}{\lambda}$. We have that $\operatorname{Ap}\left(S, a_{1}\right)$ is obtained from $\operatorname{Ap}\left(\widetilde{S}, \frac{a_{1}}{\lambda}\right)$ by multiplication by λ.

Theorem 1.3. (Apéry [1])Suppose that a_{1}, \ldots, a_{n} are natural numbers such that $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=$ λ.

1. $\operatorname{Ap}\left(S, a_{1}\right):=\left\{\lambda w_{0}, \ldots, \lambda w_{\frac{a_{1}}{\lambda}-1}\right\}$, where w_{i} is the smallest element is \widetilde{S} congruent to $i \bmod \frac{a_{1}}{\lambda}$.
2. $g(S)=\max \left\{s-a_{1} \mid s \in \operatorname{Ap}\left(S, a_{1}\right)\right\}$.

Proof. 1. We can assume that a_{1}, \ldots, a_{n} are relatively prime numbers.
First we prove that for all $i=0, \ldots, a_{1}-1, w_{i}$ belongs to $\operatorname{Ap}\left(S, a_{1}\right)$. Suppose that it is not true, that is $w_{i}-a_{1} \in S$ for some $i=0, \ldots, a_{1}-1$. It follows that $w_{i}-a_{1}<w_{i}$ and both $w_{i}-a_{1}, w_{i} \in S$ are congruent to $i \bmod a_{1}$. This is a contradiction with the definition of w_{i}. As a consequence $\operatorname{Ap}\left(S, a_{1}\right)$ has at least a_{1} elements in order to prove the claim it will be enough to show that $\operatorname{Ap}\left(S, a_{1}\right)$ has exactly a_{1} elements. Suppose that $\operatorname{card}\left(\operatorname{Ap}\left(S, a_{1}\right)\right)>a_{1}$, then there exists two elements $s_{1}<s_{2}$ in $\operatorname{Ap}\left(S, a_{1}\right)$ such that both $s_{1}<s_{2}$ are congruent to $i \bmod a_{1}$ for some $i=0, \ldots, a_{1}-1$, that is $s_{2}=s_{1}+k a_{1}$ with $k>0$ a natural integer, hence $s_{2} \notin \operatorname{Ap}\left(S, a_{1}\right)$, a contradiction.
2. Let $h \in \mathbb{N}$ such that $h>\max \left\{s-a_{1} \mid s \in \operatorname{Ap}\left(S, a_{1}\right)\right\}$, since h is congruent to i $\bmod a_{1}$ for some $i=0, \ldots, a_{1}-1$, we can write $h=w_{i}+\alpha a_{1}$, with $\alpha \in \mathbb{Z}$, hence $h=\left(w_{i}-a_{1}\right)+(\alpha+1) a_{1}$, since $h>\left(w_{i}-a_{1}\right)$ we have $(\alpha+1)>0$, hence $\alpha \geq 0$, which implies that $h \in S$.

Corollary 1.4. Let $n=2$ suppose that a_{1}, a_{2} are relatively prime numbers then $g(S)=$ $\left(a_{1}-1\right)\left(a_{2}-1\right)-1$.

Proof. We give a combinatorial proof using Apéry sets. Since a_{1}, a_{2} are relatively prime numbers, we have

$$
\operatorname{Ap}\left(S, a_{1}\right):=\left\{0, a_{2}, \ldots,\left(a_{1}-1\right) a_{2}\right\}
$$

hence $g(S)=\left(a_{1}-1\right)\left(a_{2}\right)-a_{1}=\left(a_{1}-1\right)\left(a_{2}-1\right)-1$

For $n=2$, we will give an algebraic proof later.
Corollary 1.5. For $i=0, \ldots, a_{1}-1$ let $S_{i}=\left\{s \in S \mid s \equiv i \bmod a_{1}\right\}$. Then S is the disjoint union of $S_{0}, \ldots S_{a_{1}-1}$.

2 Frobenius number and Hilbert-Poincaré series

Let $R:=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring graded by the weights $\operatorname{deg} x_{1}=a_{1}, \ldots, \operatorname{deg} x_{n}=$ a_{n}, and $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a graded ideal. Let $B=R / I$, the Hilbert-function of B is defined by $H_{B}(l)=\operatorname{dim}_{K} B_{l}$, for all $l \in \mathbb{Z}$, and the Hilbert-Poincaré series of B :

$$
P_{B}(u)=\sum_{l \in \mathbb{Z}} H_{B}(l) u^{l} .
$$

We recall the following Theorem from [6]
Theorem 2.1. Let $R:=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring graded by the weights $\operatorname{deg} x_{1}=$ $a_{1}, \ldots, \operatorname{deg} x_{n}=a_{n}, I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a graded ideal and $B:=R / I$. Then

1. The Hilbert-Poincaré series of B is a rational function:

$$
P_{B}(u)=\frac{Q_{B}(u)}{\left(1-u^{a_{1}}\right)\left(1-u^{a_{2}}\right) \ldots\left(1-u^{a_{n}}\right)},
$$

where $Q_{B}(u)$ is a polynomial on u.
2. There exists h polynomials with integer coefficients $\Phi_{H_{B}, 0}(l), \ldots, \Phi_{H_{B}, h}(l)$ such that $H_{B}(l h+i)=\Phi_{H_{B}, i}(l)$ for $0 \leq i \leq h-1$ and l large enough. We recall that the index of regularity of the Hilbert function is the biggest integer l such that $H_{B}(l) \neq \Phi_{H_{B}, i}(l)$, for any i.
3. The index of regularity of the Hilbert function equals the degree of the rational fraction defining the Poincaré series.

Corollary 2.2. [5] Let S be the semigroup generated by a_{1}, \ldots, a_{n}, and $A=K\left[t^{a_{1}}, \ldots, t^{a_{n}}\right] \subset$ $K[t]$. The Frobenius number $g(S)$ coincides with the degree of the rational fraction defining the Poincaré series $P_{A}(u)$ by the theorem 2.1.

Proof. The Hilbert function of A is given by

$$
H_{A}(l)= \begin{cases}1 & \text { if } l \in S \\ 0 & \text { if } l \notin S\end{cases}
$$

In particular if a_{1}, \ldots, a_{n} are relatively prime, $H_{A}(l)=1$ for l large enough, and the Frobenius number coincides with the index of regularity of the Hilbert function $H_{A}(l)$, so it is the degree of the rational fraction defining the Poincaré series $P_{A}(u)$.

3 Gröbner basis

Let a_{1}, \ldots, a_{n} be natural numbers, $\lambda=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$. We denote by S (resp. \widetilde{S}) the semigroup generated by a_{1}, \ldots, a_{n} (resp. by $a_{1} / \lambda, \ldots, a_{n} / \lambda$). Note that the semigroups rings $K[S], K[\widetilde{S}]$ are isomorphic.

Let $R:=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring graded by the weights $\operatorname{deg} x_{1}=a_{1}, \ldots, \operatorname{deg} x_{n}=$ a_{n}. We consider $\prec_{\text {degrevlex }}$ the degree reverse lexicographical order with x_{n}, \ldots, x_{1}. The first statement of the following theorem is an extension to the quasi-homogeneous case of [4].

Theorem 3.1. Let $A:=K\left[t^{a_{1}}, \ldots, t^{a_{n}}\right] \simeq R / I(S)$.

1. The polynomial ring $K\left[x_{1}\right] \subset A$ is a Noether normalization. Moreover let $G(S)$ be a Gröbner basis for $\prec_{\text {revlex }}$ and in $(I(S))$ be the initial ideal then

$$
A \simeq \oplus_{x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \notin i n(I(S))} K\left[t^{a_{1}}\right]\left[t^{k_{2} a_{2}+\ldots+k_{n} a_{n}}\right] .
$$

2. The Hilbert-Poincaré series is given by:

$$
P_{A}(t)=\frac{\sum_{x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \notin i n(I(S))} t^{k_{2} a_{2}+\ldots+k_{n} a_{n}}}{1-t^{a_{1}}}
$$

3. The Frobenius number $g(\widetilde{S})=\frac{\max \left\{k_{2} a_{2}+\ldots+k_{n} a_{n} \mid x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \notin \operatorname{in}(I(S))\right\}-a_{1}}{\lambda}$.

Proof. 1. We have that for any $i=2, \ldots, n,\left(t^{a_{i}}\right)^{a_{1}}-\left(t^{a_{1}}\right)^{a_{i}}=0$, so $K\left[t^{a_{1}}, \ldots, t^{a_{n}}\right]$ is integral over $K\left[t^{a_{1}}\right]$, both rings have dimension one so $K\left[t^{a_{1}}\right] \subset K\left[t^{a_{1}}, \ldots, t^{a_{n}}\right]$ is a Noether normalization, also both rings are Cohen-Macaulay. By the AuslanderBuschsbaum formula we get that $K\left[t^{a_{1}}, \ldots, t^{a_{n}}\right]$ is a free $K\left[t^{a_{1}}\right]$-module. This is the same to say that $R / I(S)$ is a free $K\left[x_{1}\right]$-module. Since $R / I(S)$ is a graded $K\left[x_{1}\right]$ module, we can use Nakayama's lemma, hence any K-basis of $R /\left(I(S), x_{1}\right)$ gives us a basis of $R / I(S)$ as a free $K\left[x_{1}\right]$-module. Let $G(S)$ be a Gröbner basis for $\prec_{\text {revlex }}$ and in $(I(S))$ be the initial ideal, by definition of $\prec_{\text {degrevlex }}, x_{1}$ does not divides any of the elements in in $(I(S))$. On the other hand Macaulay's theorem [2][Theorem 15.3]says us that the set of monomials not in $i n(I(S))$ is a basis of $R / I(S)$ as a free $K\left[x_{1}\right]$-module.
2. It is clear that the Hilbert-Poincaré series of $K\left[t^{a_{1}}\right]$ is $\frac{1}{1-t^{a_{1}}}$, the Hilbert-Poincaré series is an additive function, hence we have the formula for the Hilbert-Poincaré series of A.
3. By 2.1 The Frobenius number of S is the degree of the Hilbert-Poincaré series of A.

We have the following consequence which will be important for our algorithm:
Corollary 3.2. We have that

1. $\operatorname{Ap}\left(S, a_{1}\right)=\left\{k_{2} a_{2}+\ldots+k_{n} a_{n} \mid x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \notin\right.$ in $\left.(I(S))\right\}$. In particular

$$
\operatorname{card}\left\{x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \notin \operatorname{in}(I(S))\right\}=\frac{a_{1}}{\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)} .
$$

2. Let $s \in \operatorname{Ap}\left(S, a_{1}\right)$, such that $s=k_{2} a_{2}+\ldots+k_{n} a_{n}$ and $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \notin$ in $(I(S))$. Suppose that $s=l_{2} a_{2}+\ldots+l_{n} a_{n}$ for some natural numbers l_{2}, \ldots, l_{n}, then $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \prec_{\text {revlex }}$ $x_{2}^{l_{2}} \ldots x_{n}^{l_{n}}$.

Proof. We can assume that $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$.

1. By the above theorem $K\left[t^{a_{1}}, \ldots, t^{a_{n}}\right] \simeq \oplus_{s_{i} \in H} K\left[t^{a_{1}}\right]\left[t^{s_{i}}\right]$ where $H=\left\{k_{2} a_{2}+\ldots+\right.$ $\left.k_{n} a_{n} \mid x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \notin \operatorname{in}(I(S))\right\}$, now we prove that $H=\operatorname{Ap}\left(S, a_{1}\right)$. Let $s \in H$ suppose that $s \notin \operatorname{Ap}\left(S, a_{1}\right)$, hence $s-a_{1} \in S$, by the above decomposition there exists unique $s_{i} \in H, l \in \mathbb{N}$ such that $s-a_{1}=s_{i}+l a_{1}$ that is $s=s_{i}+(l+1) a_{1}$ a contradiction to the direct sum decomposition. Reciprocally, let $s \in \operatorname{Ap}\left(S, a_{1}\right)$, then there exists unique $s_{i} \in H, l \in \mathbb{N}$ such that $s=s_{i}+l a_{1}$, if $l>0$ then $s-a_{1} \in S$ a contradiction, hence $s=s_{i} \in H$.
2. If $s=l_{2} a_{2}+\ldots+l_{n} a_{n}$ with $\left(k_{1}, \ldots, k_{n}\right) \neq\left(l_{1}, \ldots, l_{n}\right)$ and $x_{2}^{l_{2}} \ldots x_{n}^{l_{n}} \prec_{\text {revlex }} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$ then $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \in \operatorname{in}(I(S))$, a contradiction.

Example 3.3. Let $n=2$, and a_{1}, a_{2} be natural numbers, $\lambda=\operatorname{gcd}\left(a_{1}, a_{2}\right)$, we have that $K\left[t^{a_{1}}, t^{a_{2}}\right] \simeq K\left[x_{1}, x_{2}\right] /\left(x_{2}^{a_{1} / \lambda}-x_{1}^{a_{2} / \lambda}\right)$ it is clear that that $x_{2}^{a_{1} / \lambda}-x_{1}^{a_{2} / \lambda}$ is a Gröbner basis of the ideal $\left(x_{2}^{a_{1} / \lambda}-x_{1}^{a_{2} / \lambda}\right)$ for $\prec_{\text {revlex }}$. We have $\operatorname{in}\left(x_{2}^{a_{1} / \lambda}-x_{1}^{a_{2} / \lambda}\right)=\left(x_{2}^{a_{1} / \lambda}\right)$, hence $K\left[t^{a_{1}}, t^{a_{2}}\right]=\simeq \oplus_{k=0}^{a_{1} / \lambda-1} K\left[t^{a_{1}}\right]\left[t^{k a_{2}}\right]$, the Poincaré series is given by: $P_{A}(t)=\frac{\sum_{k=0}^{a_{1} / \lambda-1} t^{k a_{2}}}{1-t^{a_{1}}}$. if a_{1}, a_{2} are coprime then the Frobenius number is $\left(a_{1}-1\right) a_{2}-a_{1}=\left(a_{1}-1\right)\left(a_{2}-1\right)-1$.

4 Frobenius number, Hilbert-Poincaré series, the case $n=3$

This section is a short version of [6] and [7].
Let consider three natural numbers a, b, c and S be the semigroup generated by a, b, c. First, remark that any solution $\alpha:=(u, v, w)$ of the Diophantine equation $u a+v b+w c=0$ gives rise to a binomial in the ideal $I(S)$ in the following way:
we write the vector $\alpha=\alpha_{+}-\alpha_{-}$, where the components of both α_{+}, α_{-}are nonnegative then $\underline{\mathbf{x}}^{\alpha_{+}}-\underline{\mathbf{x}}^{\alpha_{-}} \in I(S)$, where $\underline{\mathbf{x}}^{\alpha_{+}}=x_{1}^{\alpha_{+1}} x_{2}^{\alpha_{+2}} x_{3}^{\alpha_{+3}}$. Reciprocally if $\underline{\mathbf{x}}^{\alpha}-\underline{\mathbf{x}}^{\beta} \in I(S)$ and $\underline{\mathbf{x}}^{\alpha}, \underline{\mathbf{x}}^{\beta}$ have not common factors then $(u, v, w):=\alpha-\beta$ is a solution of the equation $u a+v b+w c=0$.
Second, it is clear that find solutions (u, v, w) of the Diophantine equation $u a+v b+w c=0$ is equivalent to find solutions (s, p, r) of the Diophantine equation $s b-p c=r a$.
Let s_{0} be the smallest natural number such that $\left(s_{0}, 0, r_{0}\right)$ is solution of the equation $s b-p c=$ $r a$. We set $p_{0}=0$.
Let p_{1} be the smallest natural number such that $\left(s_{1}, p_{1}, r_{1}\right)$ is solution of the equation $s b-p c=r a$, with $0 \leq s_{1}<s_{0}$. Note that $s_{0}=\frac{a}{\operatorname{gcd}(a, b)}$ and $p_{1}=\frac{\operatorname{gcd}(a, b)}{\operatorname{gcd}(a, b, c)}$. The numbers s_{1} can be got from the extended Euclide's algorithm for the computation of the greatest common divisor of a, b.

Let consider the Euclides' algorithm with negative rest:

$$
\left\{\begin{aligned}
s_{0} & =q_{2} s_{1}-s_{2} \\
s_{1} & =q_{3} s_{2}-s_{3} \\
\cdots & =\cdots \\
s_{m-1} & =q_{m+1} s_{m} \\
s_{m+1} & =0
\end{aligned}\right.
$$

$q_{i} \geq 2, s_{i} \geq 0 \quad \forall i$.
Let define the sequences: $p_{i}, r_{i}(0 \leq i \leq m+1)$, by:

$$
p_{i+1}=p_{i} q_{i+1}-p_{i-1}, r_{i+1}=r_{i} q_{i+1}-r_{i-1},(1 \leq i \leq m)
$$

Note that from [7] we have for $i=0, \ldots, m$ that $s_{i} p_{i+1}-s_{i+1} p_{i}=s_{0} p_{1}=\frac{a}{\operatorname{gcd}(a, b, c)}$. Let μ the unique integer such that $r_{\mu}>0 \geq r_{\mu+1}$.
Theorem 4.1. ([5], [6] and [7]) The set

$$
x_{2}^{s_{\mu}}-x_{1}^{r_{\mu}} x_{3}^{p_{\mu}}, x_{3}^{p_{\mu+1}}-x_{1}^{-r_{\mu+1}} x_{2}^{s_{\mu+1}}, x_{2}^{s_{\mu}-s_{\mu+1}} x_{3}^{p_{\mu+1}-p_{\mu}}-x_{1}^{r_{\mu}-r_{\mu+1}}
$$

is a Gröbner basis of $I(S)$ for $\prec_{\text {revlex }}$ with x_{3}, x_{2}, x_{1}. In particular in $\left(I(S)=\left(x_{2}^{s_{\mu}}, x_{3}^{p_{\mu+1}}, x_{2}^{s_{\mu}-s_{\mu+1}} x_{3}^{p_{\mu+1}}\right)\right.$, and

$$
\begin{gathered}
\mathbb{N}^{2} \backslash \exp \left(i n(I(S))=\left\{(k, l) \in \mathbb{N}^{2} \mid 0 \leq k<s_{\mu}-s_{\mu+1}, 0 \leq l<p_{\mu+1}\right\} \cup\right. \\
\left\{(k, l) \in \mathbb{N}^{2} \mid s_{\mu}-s_{\mu+1} \leq k<s_{\mu}, 0 \leq l<p_{\mu+1}-p_{\mu}\right\} . \\
K\left[t^{a}, t^{b}, t^{c}\right] \simeq \oplus_{(k, l) \in \mathbb{N}^{2} \backslash \exp (i n(I(S))} K\left[t^{a}\right]\left[t^{k b+l c}\right] .
\end{gathered}
$$

In particular the Poincaré series is given by:

$$
P_{A}(t)=\frac{\sum_{(k, l) \in \mathbb{N}^{2} \backslash \exp (i n(I(S))} t^{k b+l c}}{1-t^{a}}
$$

and if the numbers a, b, c are relatively prime the Frobenius number is

$$
g(S)=\max \left\{k b+l c \mid(k, l) \in \mathbb{N}^{2} \backslash \exp (i n(I(S))\}-a_{1}\right.
$$

Proof. we can give a new and shorter proof than the one given in the general case in [7]. We can assume that the numbers a, b, c are relatively prime. Let consider the three elements of $I(S): x_{2}^{s_{\mu}}-x_{1}^{r_{\mu}} x_{3}^{p_{\mu}}, x_{3}^{p_{\mu+1}}-x_{1}^{-r_{\mu+1}} x_{2}^{s_{\mu+1}}, x_{2}^{s_{\mu}-s_{\mu+1}} x_{3}^{p_{\mu+1}-p_{\mu}}-x_{1}^{r_{\mu}-r_{\mu+1}}$. It then follows that $J:=\left(x_{2}^{s_{\mu}}, x_{3}^{p_{\mu+1}}, x_{2}^{s_{\mu}-s_{\mu+1}} x_{3}^{p_{\mu+1}}\right) \subset \operatorname{in}(I(S)$. Now we count the numbers of monomial not in J,

$$
\operatorname{card}\left(\mathbb{N}^{2} \backslash \exp (J)\right)=\left(s_{\mu}-s_{\mu+1}\right) p_{\mu+1}+s_{\mu+1}\left(p_{\mu+1}-p_{\mu}\right)=s_{\mu} p_{\mu+1}-s_{\mu+1} p_{\mu}=a
$$

On the other hand by Corollary 3.2, $\operatorname{card}\left(\mathbb{N}^{2} \backslash \exp (\operatorname{in}(I(S)))=a\right.$ this implies $\operatorname{in}(I(S)=J$, hence the set $x_{2}^{s_{\mu}}-x_{1}^{r_{\mu}} x_{3}^{p_{\mu}}, x_{3}^{p_{\mu+1}}-x_{1}^{-r_{\mu+1}} x_{2}^{s_{\mu+1}}, x_{2}^{s_{\mu}-s_{\mu+1}} x_{3}^{p_{\mu+1}-p_{\mu}}-x_{1}^{r_{\mu}-r_{\mu+1}}$ is a Gröbner basis of $I(S)$ for $\prec_{\text {revlex }}$ with x_{3}, x_{2}, x_{1}. The other claims follows from the Theorem 3.1

5 Algorithm for the case $n \geq 4$

For $n=3$, we have seen that the algorithm use only Euclide's algorithm. Let $n \geq 4$. Let a_{1}, \ldots, a_{n} be relatively prime natural numbers, S the semigroup generated by a_{1}, \ldots, a_{n}. Let $R:=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring graded by the weights $\operatorname{deg} x_{1}=a_{1}, \ldots, \operatorname{deg} x_{n}=$ a_{n}. We consider $\prec_{\text {degrevex }}$ the degree reverse lexicographical order with $x_{n}, \ldots, x_{1}, A=$ $K\left[t^{a_{1}}, \ldots, t^{a_{n}}\right] \simeq R / I(S)$.

The algorithm is inductive on n.
Algorithm 5.1. Frobenius MM-DD:
Input: a_{1}, \ldots, a_{n}
Ouput: The Grobner basis of $I(S)$, the Noether decomposition, the Apéry set of S with respect to a_{1}. The Frobenius number of S.

Begin

1. For any subset $T \subset\left\{x_{1}, \ldots, x_{n}\right\}$ such that $x_{1} \in T$ and $3 \leq \operatorname{card}(T) \leq n-1$ compute the Noether decomposition as in the Theorem 3.1, where we assume that the ring $K[T]$ is provided with the induced order of $\prec_{\text {revlex }}$.
2. For $i=2, \ldots, n$ let S_{i} the semigroup generated by $\mathcal{A} \backslash\left\{a_{i}\right\}$. Let G_{i} be a Gröbner basis for the semigroup ring $K\left[S_{i}\right]$ as a quotient of $K\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$. For any two distinct integers $i, k \in\{2, \ldots, n\}$, let $g_{k, i}$ be the small integer such that $x_{k}^{g_{k, i}} \in \operatorname{in}\left(G_{i}\right)$. Let $g_{k}=\min \left\{g_{k, i} \mid i=2, \ldots, n, i \neq k\right\}$. In order to look for monomials not in $\operatorname{in}(I(S)$ we need only to check for monomials $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$ with $k_{i}<g_{i}$. Moreover by 3.2 we have $\operatorname{card}\left\{x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \notin \operatorname{in}(I(S))\right\}=a_{1}$.
3. For $i=2, \ldots, n$ let S_{i} the semigroup generated by $\mathcal{A} \backslash\left\{a_{i}\right\}$. Let G_{i} be a Gröbner basis for the semigroup ring $K\left[S_{i}\right]$ as a quotient of $K\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$ for the induced order of $\prec_{\text {revlex }}$. For any two distinct integers $i, k \in\{2, \ldots, n\}$, let $g_{k, i}$ be the small integer such that $x_{k}^{g_{k, i}} \in \operatorname{in}\left(G_{i}\right)$, and $g_{k}=\max \left\{g_{k, i} \mid i \neq k\right\}$
4. For $i=2$ to $i=n$, and for $s=1$ to $s=g_{i}$ check if the monomial $x_{i}^{s} \in i n(I(S)$. Let \bar{g}_{i} the small integer s such that $x_{i}^{s} \in \operatorname{in}(I(S)$.
5. For $s=0$ to $s=\bar{g}_{2}+\ldots+\bar{g}_{n}-(n-1)$ and any monomial $M:=x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$, such that $k_{i}<\bar{g}_{i}$ for all $i=2, \ldots, n$, check if the monomial $M \in \operatorname{in}(I(S)$.
6. In both cases, by a simple test we can assume that there is not a proper monomial $M^{\prime} \in \operatorname{in}(I(S)$ dividing M.
7. The algorithm has a second stop since the number of monomials not in $i n(I(S)$ is exactly a_{1}.

End (of the algorithm).
Let precise the consistence of the steps 4 and 5 , since they are similar we only prove the step 5:

Let $\operatorname{supp}(M)$ be the set of integers i such that x_{i} divides M, and $\overline{\operatorname{supp}(M)}:=\{1, \ldots, n\} \backslash$ $\operatorname{supp}(M)$. Let $S_{\overline{\operatorname{supp}(M)}}$ be the semigroup generated by all the numbers a_{i} such that $a_{i} \in$ $\overline{\operatorname{supp}(M)} . M \in \operatorname{in}\left(I(S)\right.$ if and only if there is a binomial $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}-\Pi_{i \in \overline{\operatorname{supp}(M)}} x_{i}^{l_{i}} \in I(S)$ such that $\Pi_{i \in \operatorname{supp}(M)} x_{i}^{l_{i}} \prec_{\text {revlex }} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$. This is equivalent to show that there exists $\sum_{i \in \overline{\operatorname{supp}(M)}} l_{i} a_{i} \in S_{\overline{s u p p(M)}}$ such that $k_{2} a_{2}+\ldots+k_{n} a_{n}=\sum_{i \in \overline{\operatorname{supp}(M)}} l_{i} a_{i}$ and $\Pi_{i \in \overline{\operatorname{supp}(M)}} x_{i}^{l_{i}} \prec_{\text {revlex }}$ $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$.

Let $\lambda_{M}=\operatorname{gcd}\left\{a_{i} \mid i \in \overline{\operatorname{supp}(M)}\right.$, and $\bar{a}_{1}=\frac{a_{1}}{\lambda_{M}}$. By the theorem 3.1 and its corollary 3.2 we have $K\left[S_{\overline{\operatorname{supp}(M)}}\right] \simeq \oplus_{i=0}^{\bar{a}_{1}-1} K\left[t^{a_{1}}\right]\left[t^{w_{i}}\right]$, where $w_{i} \in \operatorname{Ap}\left(\mathrm{~S}_{\overline{\operatorname{supp}(M)}}, \mathrm{a}_{1}\right), w_{i} \equiv \lambda_{M} i \bmod a_{1}$.

Let $\rho=k_{2} a_{2}+\ldots+k_{n} a_{n} \bmod a_{1}$. If $\rho \notin \lambda_{M} \mathbb{N}$ then $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \notin i n(I(S))$. Otherwise $k_{2} a_{2}+\ldots+k_{n} a_{n}=w_{\frac{\rho}{\lambda_{M}}}+\alpha a_{1}$, with $\alpha \in \mathbb{Z}$. Let $w_{\frac{\rho}{\lambda_{M}}}=\sum_{i \in \overline{\operatorname{supp}(M)}} l_{i} a_{i}$ such that $\Pi_{i \in \overline{\operatorname{supp}(M)}} x_{i}^{l_{i}} \notin \operatorname{in}\left(I\left(S_{\overline{\operatorname{supp}(M)}}\right)\right)$. We have three cases:

1. If $\alpha<0$ then $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \notin \operatorname{in}(I(S))$.
2. If $\alpha>0$ then the binomial $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}-x_{1}^{\alpha} \Pi_{i \in \overline{\operatorname{supp}(M)}} x_{i}^{l_{i}} \in I(S)$ and $\Pi_{i \in \overline{\operatorname{supp}(M)}} x_{i}^{l_{i}} \prec_{\text {revlex }}$ $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$, so $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \in \operatorname{in}(I(S)$.
3. If $\alpha=0$, let j the smallest number such that $l_{j}>0$,
(a) if $j<i$ for any $i \in \operatorname{supp}(M)$ then as above $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}-\Pi_{i \in \operatorname{supp}(M)} x_{i}^{l_{i}} \in I(S)$ and $\Pi_{i \in \overline{\operatorname{supp}(M)}} x_{i}^{l_{i}} \prec_{\text {revlex }} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$, so $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \in \operatorname{in}(I(S)$.
(b) If $j>i$ for some $i \in \operatorname{supp}(M)$, then we have $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \prec_{\text {revlex }} \Pi_{i \in \overline{\operatorname{supp}(M)}} x_{i}^{l_{i}}$. On the other hand if $\sum_{i \in \overline{s u p p(M)}} l_{i} a_{i}=\sum_{i \in \operatorname{supp}(M)} l_{i}^{\prime} a_{i}$ for some other numbers l_{i}^{\prime} we have $\Pi_{i \in \overline{\operatorname{supp}(M)}} x_{i}^{l_{i}} \prec_{\text {revlex }} \Pi_{i \in \overline{\operatorname{supp(M)}}} x_{i}^{l_{i}^{\prime}}$ because $\Pi_{i \in \overline{s u p p(M)}} x_{i}^{l_{i}} \notin$ $\operatorname{in}\left(I\left(S_{\overline{\operatorname{supp}(\underline{M})}}\right)\right)$. Hence $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \prec_{\text {revlex }} \Pi_{i \in \overline{\operatorname{supp}(M)}} x_{i}^{l_{i}^{\prime}}$ for any natural integers $l_{i}^{\prime}, i \in \overline{\operatorname{supp}(M)}$, such that $k_{2} a_{2}+\ldots+k_{n} a_{n}=\sum_{i \in \overline{\operatorname{supp}(M)}} l_{i}^{\prime} a_{i}$, which implies that $x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \notin \operatorname{in}(I(S)$.
Our algorithm is complete.
Remark 5.2. Since the number of monomials not in $\operatorname{in}\left(I(S)\right.$ is exactly a_{1}, we will have that $g_{k, i}, g_{i}, \bar{g}_{i}$ are strictly bounded above by a_{1}. Moreover by the same reason $\bar{g}_{2}+\ldots+\bar{g}_{n}-(n-1)$ is strictly bounded above by a_{1}, hence the number of tests in the step 4 of the algorithm is at most a_{1}^{2} and the number of tests in the step 5 of the algorithm is at most $a_{1}\binom{a_{1}+n-2}{n-1}$.

References

[1] R. Apéry, Sur les branches superlinéaires des courbes algébriques, C.R. Acad. Sci. Paris 222 (1946), 1198-1200.
[2] D. Eisenbud, Commutative algebra with a view toward algebraic geometry. Graduate Texts in Math., vol. 150 (1995), Springer-Verlag, Berlin and New York.
[3] Einstein, David, et al. "Frobenius numbers by lattice point enumeration.." Integers 7.1 (2007)
[4] Monique Lejeune-Jalabert, Effectivité des calculs polynomiaux, Courd de DEA 19841985, Institut Fourier, Université de Grenoble I.
[5] Morales Marcel, Fonctions de Hilbert, genre géométrique d'une singularité quasihomogène Cohen-Macaulay. CRAS Paris, t.301, série A $n^{o} 14$ (1985).
[6] Morales M.- Syzygies of monomial curves and a linear diophantine problem of Frobenius, Preprint Max Planck Institut für Mathematik (Bonn-RFA) (1987
[7] M. Morales, Équations des variétés monomiales en codimension deux, J. Algebra 175 (1995) 1082-1095.
[8] J. Rodseth, On a linear Diophantine problem of Frobenius, J. reine angew. Math., 301(1978) 171-178
[9] B.H. Roune, Solving Thousand Digit Frobenius Problems Using Grobner Bases, Journal of Symbolic Computation volume 43(1) 2008,1-7.

[^0]: ${ }^{1}$ version of august 302015

