Learning a proximity measure to complete a community - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Learning a proximity measure to complete a community

Maximilien Danisch
  • Fonction : Auteur
  • PersonId : 940804
  • IdRef : 188447407
Jean-Loup Guillaume

Résumé

In large-scale online complex networks (Wikipedia, Facebook, Twitter, etc.) finding nodes related to a specific topic is a strategic research subject. This article focuses on two central notions in this context: communities (groups of highly connected nodes) and proximity measures (indicating whether nodes are topologically close). We propose a parametrized proximity measure which, given a set of nodes belonging to a community, learns the optimal parameters and identifies the other nodes of this community, called multi-ego-centered community as it is centered on a set of nodes. We validate our results on a large dataset of categorized Wikipedia pages and on benchmarks, we also show that our approach performs better than existing ones. Our main contributions are (i) a new ergonomic parametrized proximity measure, (ii) the automatic tuning of the proximity's parameters and (iii) the unsupervised detection of community boundaries.
Fichier principal
Vignette du fichier
PID3355961.pdf (477.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01208519 , version 1 (02-10-2015)

Identifiants

Citer

Maximilien Danisch, Jean-Loup Guillaume, Bénédicte Le Grand. Learning a proximity measure to complete a community. 2014 International Conference on Data Science and Advanced Analytics (DSAA2014), Oct 2014, Shanghai, China. pp.90-96, ⟨10.1109/DSAA.2014.7058057⟩. ⟨hal-01208519⟩
196 Consultations
239 Téléchargements

Altmetric

Partager

More