Bicovariograms and Euler characteristic of Regular sets - Archive ouverte HAL
Article Dans Une Revue Mathematical News / Mathematische Nachrichten Année : 2018

Bicovariograms and Euler characteristic of Regular sets

Résumé

We establish an expression of the \EC~of a $r$-regular planar set in function of some variographic quantities. The usual $\mathcal{C} ^{2}$ framework is relaxed to a $\mathcal{C} ^{1,1}$ regularity assumption, generalising existing local formulas for the \EC. We give also general bounds on the number of connected components of a measurable set of $\mathbb{R}^{2}$ in terms of local quantities. These results are then combined to yield a new expression of the mean \EC~of a random regular set, depending solely on the third order marginals for arbitrarily close arguments. We derive results for level sets of some moving average processes and for the boolean model with non-connected polyrectangular grains in $\mathbb{R}^{2}$. Applications to excursions of smooth bivariate random fields are derived in the companion paper \cite{LacEC2}, and applied for instance to $\C^{1,1}$ Gaussian fields, generalising standard results.
Fichier principal
Vignette du fichier
bicovariograms-EC2-R1-neutralversion-hal.pdf (1.89 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01207501 , version 1 (01-10-2015)
hal-01207501 , version 2 (30-12-2015)
hal-01207501 , version 3 (09-03-2017)

Identifiants

Citer

Raphaël Lachièze-Rey. Bicovariograms and Euler characteristic of Regular sets. Mathematical News / Mathematische Nachrichten, 2018, 291 (2-3), pp.398-419. ⟨hal-01207501v3⟩
153 Consultations
169 Téléchargements

Altmetric

Partager

More