Concept-based Summarization using Integer Linear Programming: From Concept Pruning to Multiple Optimal Solutions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Concept-based Summarization using Integer Linear Programming: From Concept Pruning to Multiple Optimal Solutions

Résumé

In concept-based summarization, sentence selection is modelled as a budgeted maximum coverage problem. As this problem is NP-hard, pruning low-weight concepts is required for the solver to find optimal solutions efficiently. This work shows that reducing the number of concepts in the model leads to lower Rouge scores, and more importantly to the presence of multiple optimal solutions. We address these issues by extending the model to provide a single optimal solution, and eliminate the need for concept pruning using an approximation algorithm that achieves comparable performance to exact inference.
Fichier principal
Vignette du fichier
D15-1220.pdf (136.75 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01203750 , version 1 (30-09-2015)

Identifiants

  • HAL Id : hal-01203750 , version 1

Citer

Florian Boudin, Hugo Mougard, Benoit Favre. Concept-based Summarization using Integer Linear Programming: From Concept Pruning to Multiple Optimal Solutions. Conference on Empirical Methods in Natural Language Processing (EMNLP) 2015, Sep 2015, Lisbonne, Portugal. ⟨hal-01203750⟩
621 Consultations
692 Téléchargements

Partager

More