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Abstract

In concept-based summarization, sentence
selection is modelled as a budgeted maxi-
mum coverage problem. As this problem
is NP-hard, pruning low-weight concepts
is required for the solver to find optimal
solutions efficiently. This work shows that
reducing the number of concepts in the
model leads to lower ROUGE scores, and
more importantly to the presence of mul-
tiple optimal solutions. We address these
issues by extending the model to provide a
single optimal solution, and eliminate the
need for concept pruning using an approx-
imation algorithm that achieves compara-
ble performance to exact inference.

1 Introduction

Recent years have witnessed increased interest in
global inference methods for extractive summa-
rization. These methods formulate summarization
as a combinatorial optimization problem, i.e. se-
lecting a subset of sentences that maximizes an
objective function under a length constraint, and
use Integer Linear Programming (ILP) to solve it
exactly (McDonald, 2007).

In this work, we focus on the concept-based ILP
model for summarization introduced by (Gillick
and Favre, 2009). In their model, a summary is
generated by assembling the subset of sentences
that maximizes a function of the unique concepts it
covers. Selecting the optimal subset of sentences
is then cast as an instance of the budgeted maxi-
mum coverage problem1.

As this problem is NP-hard, pruning low-weight
concepts is required for the ILP solver to find opti-
mal solutions efficiently (Gillick and Favre, 2009;

1Given a collection S of sets with associated costs and a
budget L, find a subset S′ ⊆ S such that the total cost of
sets in S′ does not exceed L, and the total weight of elements
covered by S′ is maximized (Khuller et al., 1999).

Qian and Liu, 2013; Li et al., 2013). However, re-
ducing the number of concepts in the model has
two undesirable consequences. First, it forces the
model to only use a limited number of concepts to
rank summaries, resulting in lower ROUGE scores.
Second, by reducing the number of items from
which sentence scores are derived, it allows dif-
ferent sentences to have the same score, and ulti-
mately leads to multiple optimal summaries.

To our knowledge, no previous work has men-
tioned these problems, and only results corre-
sponding to the first optimal solution found by the
solver are reported. However, as we will show
through experiments, these multiple optimal so-
lutions cause a substantial amount of variation in
ROUGE scores, which, if not accounted for, could
lead to incorrect conclusions. More specifically,
the contributions of this work are as follows:

• We evaluate (Gillick and Favre, 2009)’s sum-
marization model at various concept pruning
levels. In doing so, we quantify the impact of
pruning on running time, ROUGE scores and
the number of optimal solutions.

• We extend the model to address the prob-
lem of multiple optimal solutions, and we
sidestep the need for concept pruning by de-
veloping a fast approximation algorithm that
achieves near-optimal performance.

2 Concept-based ILP Summarization

2.1 Model definition
Gillick and Favre (2009) introduce a concept-
based ILP model for summarization that casts sen-
tence selection as a maximum coverage problem.
The key assumption of their model is that the value
of a summary is defined as the sum of the weights
of the unique concepts it contains. That way, re-
dundancy within the summary is addressed im-
plicitly at a sub-sentence level: a summary only
benefits from including each concept once.
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Formally, let wi be the weight of concept i, ci
and sj two binary variables indicating the pres-
ence of concept i and sentence j in the summary,
Occij an indicator of the occurrence of concept i
in sentence j, lj the length of sentence j and L the
length limit for the summary, the concept-based
ILP model is described as:

max
∑

i

wici (1)

s.t.
∑

j

ljsj ≤ L (2)

sjOccij ≤ ci, ∀i, j (3)∑
j

sjOccij ≥ ci, ∀i (4)

ci ∈ {0, 1} ∀i
sj ∈ {0, 1} ∀j

The constraints formalized in equations 3 and 4
ensure the consistency of the solution: selecting a
sentence leads to the selection of all the concepts it
contains, and selecting a concept is only possible
if it is present in at least one selected sentence.

Choosing a suitable definition for concepts and
a method to estimate their weights are the two
key factors that affect the performance of this
model. Bigrams of words are usually used as a
proxy for concepts (Gillick and Favre, 2009; Berg-
Kirkpatrick et al., 2011). Concept weights are
either estimated by heuristic counting, e.g. docu-
ment frequency in (Gillick and Favre, 2009), or
obtained by supervised learning (Li et al., 2013).

2.2 Pruning to reduce complexity
The concept-level formulation of (Gillick and
Favre, 2009) is an instance of the budgeted maxi-
mum coverage problem, and solving such a prob-
lem is NP-hard (Khuller et al., 1999). Keeping the
number of variables and constraints small is then
critical to reduce the model complexity.

In previous work, efficient summarization was
achieved by pruning concepts. One way to re-
duce the number of concepts in the model is to
remove those concepts that have a weight below
a given threshold (Gillick and Favre, 2009). An-
other way is to consider only the top-n highest
weighted concepts (Li et al., 2013). Once low-
weight concepts are pruned, sentences that do not
contain any remaining concepts are removed, fur-
ther reducing the number of variables and con-
straints in the model. As such, this can be regarded
as a way to approximate the problem.

Pruning concepts to reduce complexity also cuts
down the number of items from which summary
scores are derived. As we will see in Section 3.2,
this results in a lower ROUGE scores and leads to
the production of multiple optimal summaries.

The concept weighting function also plays an
important role in the presence of multiple opti-
mal solutions. Limited-range functions, such as
frequency-based ones, yield many ties and in-
crease the likelihood that different sentences have
the same score. Redundancy within the set of
input sentences exacerbate this problem, since
highly similar sentences are likely to contain the
same concepts.

2.3 Summarization parameters

For comparison purposes, we use the same system
pipeline as in (Gillick et al., 2009), which is de-
scribed below.

Step 1: clean input documents; a set of rules is
used to remove bylines and format markup.

Step 2: split the text into sentences; we use
splitta2 (Gillick, 2009) and re-attach multi-
sentence quotations.

Step 3: compute parameters needed by the
model; we extract and weight the concepts.

Step 4: prune sentences shorter than 10 words,
duplicate sentences and those that begin and end
with a quotation mark.

Step 5: map to ILP format and solve; we use an
off-the-shelf ILP solver3.

Step 6: order selected sentences for inclusion in
the summary, first by source and then by position.

Similar to previous work, we use bigrams of
words as concepts. Although bigrams are rough
approximations of concepts, they are simple to ex-
tract and match, and have been shown to perform
well at this task. Bigrams of words consisting of
two stop words4 or containing a punctuation mark
are discarded. Stemming5 is then applied to allow
more robust matching.

Concepts are weighted using document fre-
quency, i.e. the number of source documents

2We use splitta v1.03, https://code.google.
com/p/splitta/

3We use glpk v4.52, https://www.gnu.org/
software/glpk/

4We use the stoplist in nltk, http://www.nltk.org/
5We use the Porter stemmer in nltk.
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DUC’04 TAC’08
DF 1 2 3 4 1 2 3 4

# solutions 1.3 1.3 1.5 1.5 1.2 1.3 1.8 4.8
# concepts 2 955 676 247 107 2 909 393 127 56
# sentences 184 175 159 139 174 167 149 129
Avg. time (sec) 22.3 1.7 0.5 0.3 21.5 0.8 0.3 0.2

Table 1: Average number of optimal solutions, concepts and sentences for different minimum document
frequencies. The average time in seconds for finding the first optimal solution is also reported.

where the concept was seen. Document frequency
is a simple, yet effective approach to concept
weighting (Gillick and Favre, 2009; Woodsend
and Lapata, 2012; Qian and Liu, 2013). Reducing
the number of concepts in the ILP model is then
performed by pruning those concepts that occur in
fewer than a given number of documents.

ILP solvers usually provide only one solution.
To generate alternate optimal solutions, we iter-
atively add new constraints to the problem that
eliminate already found optimal solutions and re-
run the solver. We stop the iterations when the
value of the objective function returned by the
solver changes.

3 Experiments

3.1 Datasets and evaluation measures

Experiments are conducted on the DUC’04 and
TAC’08 datasets. For DUC’04, we use the 50 top-
ics from the generic multi-document summariza-
tion task (Task 2). For TAC’08, we focus only on
the 48 topics from the non-update summarization
task. Each topic contains 10 newswire articles for
which the task is to generate a summary no longer
than 100 words (whitespace-delimited tokens).

Summaries are evaluated against reference sum-
maries using the ROUGE automatic evaluation
measures (Lin, 2004). We set the ROUGE param-
eters to those6 that lead to highest agreement with
manual evaluation (Owczarzak et al., 2012), that
is, with stemming and stopwords not removed.

3.2 Results

Table 1 presents the average number of optimal
solutions at different levels of concept pruning.
Overall, the average number of optimal solutions
increases along with the minimum document fre-
quency, reaching 4.8 for TAC’08 at DF = 4. Prun-

6We use ROUGE-1.5.5 with the parameters: n 4 -m -a
-l 100 -x -c 95 -r 1000 -f A -p 0.5 -t 0

ing concepts also greatly reduces the number of
variables in the ILP formulation, and consequently
improves the run-time for solving the problem.

Interestingly, we note that, even without any
pruning, the model produces multiple optimal
solutions. The choice of document frequency
for weighting concepts is responsible for this as
it generates many ties. Finer-grained concept
weighting functions such as frequency estima-
tion (Li et al., 2013) should therefore be preferred
to limit the number of multiple optimal solutions.

The mean ROUGE recall scores of the multiple
optimal solutions for different minimal document
frequencies are presented in Table 2. Here, the
higher the concept pruning threshold, the higher
the variability of the generated summaries as in-
dicated by the standard deviation. Best ROUGE

scores are achieved without concept pruning while
the best compromise between effectiveness and
run-time is given when DF ≥ 3, confirming the
findings of (Gillick and Favre, 2009).

To show in a realistic scenario how multiple
optimal solutions could lead to different conclu-
sions, we compare in Table 3 the ROUGE-1 scores
of the summaries generated from the first op-
timal solution found by three off-the-shelf ILP
solvers against that of the systems7 that partici-
pated at TAC’08. We set the minimum document
frequency to 3, which is often used in previous
work (Gillick and Favre, 2009; Li et al., 2013),
and use a two-sided Wilcoxon signed-rank to com-
pute the number of systems that obtain signifi-
cantly lower and higher ROUGE-1 recall scores8.

Despite being comparable (p-value > 0.4), the
solutions found by the three solvers support differ-
ent conclusions. The solution found using GLPK

771 systems participated at TAC’08 but we removed
ICSI1 and ICSI2 systems which are based on the concept-
based ILP model.

8ROUGE-1 recall is most accurate metric to identify the
better summary in a pair (Owczarzak et al., 2012).
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DUC’04 TAC’08
DF ROUGE-1 ROUGE-2 ROUGE-4 ROUGE-1 ROUGE-2 ROUGE-4

1 37.74 ±0.07 9.48 ±0.05 1.45 ±0.02 37.65 ±0.10 10.63 ±0.08 2.23 ±0.04

2 37.25 ±0.08 9.14 ±0.02 1.37 ±0.01 37.16 ±0.11 9.96 ±0.07 2.05 ±0.03

3 37.37 ±0.11 9.16 ±0.06 1.41 ±0.02 37.39 ±0.15 10.62 ±0.07 2.13 ±0.03

4 37.96 ±0.10 9.38 ±0.05 1.57 ±0.02 36.73 ±0.12 10.10 ±0.08 1.78 ±0.07

Table 2: Mean ROUGE recall and standard deviation for different minimum document frequencies.

Solver ROUGE-1 ↓ / ↑
GLPK 37.33 54 / 0
Gurobi 37.20 52 / 1
CPLEX 37.17 51 / 1

Table 3: ROUGE-1 recall scores for the first opti-
mal solution found by different solvers along with
the number of systems that obtain significantly
lower (↓) or higher (↑) scores (p-value < 0.05).

indicates that the concept-based model achieves
state-of-the-art performance whereas the solutions
provided by Gurobi and CPLEX do not do so. The
reason for these differences is the use of differ-
ent solving strategies, involving heuristics for find-
ing feasible solutions more quickly. This exam-
ple demonstrates that multiple optimal solutions
should be considered during evaluation.

3.3 Solving the multiple solution problem
Multiple optimal solutions occur when concepts
alone are not sufficient to distinguish between two
competing summary candidates. Extending the
model so that it provides a single solution can
therefore not be done without introducing a sec-
ond term in the objective function. Following the
observation that the frequency of a non-stop word
in a document set is a good predictor of a word ap-
pearing in a human summary (Nenkova and Van-
derwende, 2005), we extend equation 1 as follows:

max
∑

i

wici + µ
∑

k

fktk (5)

where fk is the frequency of non-stop word k in
the document set, and tk is a binary variable indi-
cating the presence of k in the summary. Here, we
want to induce a single solution among the multi-
ple optimal solutions given by concept weighting,
and thus set µ to a small value (10−6). We add
further constraints, similar to equations 3 and 4, to
ensure the consistency of the solution.

This extended model succeeds in giving a sin-
gle solution that is at least comparable to the mean
score of the multiple optimal solutions. How-
ever, it requires about twice as much time to solve
which makes it impractical for large documents.

3.4 Fast approximation
Instead of pruning concepts to reduce complex-
ity, one may consider using an approximation
if results are found satisfactory. Here, simi-
larly to (Takamura and Okumura, 2009; Lin and
Bilmes, 2010) we implement the greedy heuristic
proposed in (Khuller et al., 1999) that solve the
budgeted maximum coverage problem with a per-
formance guarantee 1/2 · (1 − 1/e). Table 4 com-
pares the performance of the model that achieves
the best trade off between effectiveness and run-
time, that is whenDF ≥ 3, with that of the greedy
approximation without pruning.

Overall, the approximate solution is over 96%
as good as the average optimal solution. Although
the ILP solution marks an upper bound on perfor-
mance, its solving time is exponential in the num-
ber of input sentences. The approximate method
is then relevant as it marks an upper bound on
speed (less than 0.01 seconds to compute) while
having performance comparable to the ILP model
with concept pruning (p-value > 0.3).

Dataset ROUGE-1 ROUGE-2

DUC’04 37.14 (−0.7%) 9.37 (+2.3%)

TAC’08 36.90 (−1.3%) 10.27 (−3.3%)

Table 4: ROUGE recall scores of the approxima-
tion. The relative difference from the mean score
of the multiple optimal solutions is also reported.

4 Conclusion

Multiple optimal solutions are not an issue as long
as alternate solutions are equivalent. Unfortu-
nately, summaries generated from different sets of
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sentences are likely to differ. We showed through
experiments that concept pruning leads to the pres-
ence of multiple optimal solutions, and that the
latter cause a substantial amount of variation in
ROUGE scores. We proposed an extension of the
ILP that obtains unique solutions. If speed is a
concern, we showed that a near-optimal approx-
imation can be computed without pruning. The
implementation of the concept-based summariza-
tion model that we use in this study is available at
https://github.com/boudinfl/sume.

In future work, we intend to extend our study
to compressive summarization. We expect that the
number of optimal solutions will increase as mul-
tiple compression candidates, which are likely to
be similar in content, are added to the set of input
sentences.
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