Multimodal Adapted Robot Behavior Synthesis within a Narrative Human-Robot Interaction
Résumé
In human-human interaction, three modalities of communication (i.e., verbal, nonverbal, and paraverbal) are naturally coordinated so as to enhance the meaning of the conveyed message. In this paper, we try to create a similar coordination between these modalities of communication in order to make the robot behave as naturally as possible. The proposed system uses a group of videos in order to elicit specific target emotions in a human user, upon which interactive narratives will start (i.e., interactive discussions between the participant and the robot around each video's content). During each interaction experiment, the humanoid expressive ALICE robot engages and generates an adapted multimodal behavior to the emotional content of the projected video using speech, head-arm metaphoric gestures, and/or facial expressions. The interactive speech of the robot is synthesized using Mary-TTS (text to speech toolkit), which is used-in parallel-to generate adapted head-arm gestures [1]. This synthesized multimodal robot behavior is evaluated by the interacting human at the end of each emotion-eliciting experiment. The obtained results validate the positive effect of the generated robot behavior multimodality on interaction.
Domaines
Robotique [cs.RO]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...