Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence - Archive ouverte HAL
Article Dans Une Revue Stochastics and Partial Differential Equations: Analysis and Computations Année : 2016

Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence

Résumé

We consider an individual-based spatially structured population for Darwinian evolution in an asexual population. The individuals move randomly on a bounded continuous space according to a reflected brownian motion. The dynamics involves also a birth rate, a density-dependent logistic death rate and a probability of mutation at each birth event. We study the convergence of the microscopic process when the population size grows to $+\infty$ and the mutation probability decreases to $0$. We prove a convergence towards a jump process that jumps in the infinite dimensional space of the stable spatial distributions. The proof requires specific studies of the microscopic model. First, we examine the large deviation principle around the deterministic large population limit of the microscopic process. Then, we find a lower bound on the exit time of a neighborhood of a stationary spatial distribution. Finally, we study the extinction time of the branching diffusion processes that approximate small size populations.
Fichier principal
Vignette du fichier
leman2015.pdf (873.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01194574 , version 1 (07-09-2015)
hal-01194574 , version 2 (05-11-2018)

Identifiants

Citer

Hélène Leman. Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence. Stochastics and Partial Differential Equations: Analysis and Computations, 2016, 4 (4), pp.791 - 826. ⟨10.1007/s40072-016-0077-y⟩. ⟨hal-01194574v2⟩
190 Consultations
86 Téléchargements

Altmetric

Partager

More