Very efficient learning of structured classes of subsequential functions from positive data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Very efficient learning of structured classes of subsequential functions from positive data

Adam Jardine
  • Fonction : Auteur
  • PersonId : 969662
Jane Chandlee
  • Fonction : Auteur
  • PersonId : 969663
Jeffrey Heinz
  • Fonction : Auteur
  • PersonId : 969661

Résumé

In this paper, we present a new algorithm that can identify in polynomial time and data using positive examples any class of subsequential functions that share a particular finite-state structure. While this structure is given to the learner a priori, it allows for the exact learning of partial functions, and both the time and data complexity of the algorithm are linear. We demonstrate the algorithm on examples from natural language phonology and morphology in which the needed structure has been argued to be plausibly known in advance. A procedure for making any subsequential transducer onward without changing its structure is also presented.
Fichier principal
Vignette du fichier
jardine14a.pdf (396.52 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01193057 , version 1 (04-09-2015)

Identifiants

  • HAL Id : hal-01193057 , version 1

Citer

Adam Jardine, Jane Chandlee, Rémi Eyraud, Jeffrey Heinz. Very efficient learning of structured classes of subsequential functions from positive data. The 12th International Conference on Grammatical Inference, Sep 2014, Kyoto, Japan. pp.94-108. ⟨hal-01193057⟩
83 Consultations
46 Téléchargements

Partager

More