
HAL Id: hal-01193057
https://hal.science/hal-01193057v1

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Very efficient learning of structured classes of
subsequential functions from positive data
Adam Jardine, Jane Chandlee, Rémi Eyraud, Jeffrey Heinz

To cite this version:
Adam Jardine, Jane Chandlee, Rémi Eyraud, Jeffrey Heinz. Very efficient learning of structured classes
of subsequential functions from positive data. The 12th International Conference on Grammatical
Inference, Sep 2014, Kyoto, Japan. pp.94-108. �hal-01193057�

https://hal.science/hal-01193057v1
https://hal.archives-ouvertes.fr

JMLR: Workshop and Conference Proceedings 34:94–108, 2014 Proceedings of the 12th ICGI

Very efficient learning of structured classes of subsequential
functions from positive data

Adam Jardine ajardine@udel.edu
Dept. of Linguistics and Cognitive Science, University of Delaware, Newark, USA

Jane Chandlee chandlee@asel.udel.edu
Center for Pediatric Auditory and Speech Sciences, Nemours Biomedical Research, Wilmington, DE,
USA

Rémi Eyraud remi.eyraud@lif.univ-mrs.fr
QARMA team, Laboratoire d’Informatique Fondamentale, Marseille, France

Jeffrey Heinz heinz@udel.edu

Dept. of Linguistics and Cognitive Science, University of Delaware, Newark, USA

Editors: Alexander Clark, Makoto Kanazawa and Ryo Yoshinaka

Abstract

In this paper, we present a new algorithm that can identify in polynomial time and data
using positive examples any class of subsequential functions that share a particular finite-
state structure. While this structure is given to the learner a priori, it allows for the
exact learning of partial functions, and both the time and data complexity of the algorithm
are linear. We demonstrate the algorithm on examples from natural language phonology
and morphology in which the needed structure has been argued to be plausibly known in
advance. A procedure for making any subsequential transducer onward without changing
its structure is also presented.

Keywords: transduction, onwardness, identification with polynomial bounds

1. Introduction

One of the most important grammatical inference results for learning string transductions
is OSTIA [Oncina et al., 1993], which identifies in the limit total subsequential functions.
Its behavior is not unlike that of RPNI [Oncina and Garćıa, 1992], upon which it is based.
de la Higuera [2010] provides an up-to-date treatment of OSTIA. More recent work on
learning string transductions has focused on learning the entire class of regular relations or
even larger classes [Clark, 2011].

This paper focuses on proper subclasses of subsequential functions and presents an al-
gorithm that identifies each class in the limit from positive data. There are three main
reasons why this result is interesting. First, OSTIA is unable to learn partial functions
exactly, while the classes studied in the present work include partial functions. Second,
the algorithm we provide is able to learn in linear computation time and linear data with
respect to the size of the target transducer. This is an improvement over OSTIA, which,
while polynomial, requires cubic computation time. Third, this algorithm is applicable to
infinitely many classes that contain infinitely many transductions.

c© 2014 A. Jardine, J. Chandlee, R. Eyraud & J. Heinz.

Efficient Learning of structured classes of subsequential functions

The reason why this algorithm is possible is because each proper subclass comes with a
significant amount of prior knowledge. In particular, we define a subclass of subsequential
functions in terms of a finite-state structure. Essentially, the states and the transitions of the
transducer are provided, and only the output labels on the transitions are missing. In this
way, this analysis is similar to the one by Heinz and Rogers [2013], where the structure of
the automata is fixed in advance to define an efficiently learnable class of formal languages.

The proposal is also similar to OSTIA-D [Oncina and Varò, 1996] and OSTIA-R [Castel-
lanos et al., 1998], which use a priori information about the domain (OSTIA-D) and range
(OSTIA-R) of the target transduction. In particular, OSTIA-D takes as input a deter-
ministic finite-state acceptor (DFA) and adds a merging condition to OSTIA based on the
states of this DFA. (Similarly, OSTIA-R takes a DFA representation of the range as input.)
Like our proposal, OSTIA-D learns subclasses of subsequential functions, including partial
functions, but since it uses OSTIA as a base, the time complexity is still cubic, and no
complexity analysis of its characteristic sample exists to our knowledge.

The degree of requisite prior knowledge may seem undesirable, especially for cases where
it is not available. However, the domain is a regular language and if it belongs to any one
of several sub-regular classes, there are algorithms that can learn it from positive data.
But even if that is not possible, there exist scientific fields where such prior knowledge
is available, and in those fields it thus makes sense to use it. We provide examples from
linguistics, in particular phonology and morphology. Specifically, we show that such a known
structure characterizes the Input Strictly k-Local functions [Chandlee, 2014; Chandlee et al.,
to appear]. This class, which Chandlee shows includes significantly many phonological
and morphological processes, represents one way to generalize the Strictly k-Local formal
languages [McNaughton and Papert, 1971] (which are identifiable in the limit from positive
data [Garćıa et al., 1990]) to transductions. Phonological processes which are not Strictly
k-Local involve long-distance dependencies, and we show that these too are learnable, again
if the learner is provided a priori knowledge of the relevant finite-state structure.

This paper is organized as follows. §2 presents the mathematical notations that will
be used throughout. §3 introduces subsequential finite-state transducers (SFSTs) in two
forms: the traditional definition and a minor variant of this definition (delimited SFSTs)
that we use. This section also introduces onward transducers, which will be crucial for
the learning algorithm. §4 shows how to convert any delimited SFST into an onward
one without changing its structure. §5 presents the learning paradigm of identification in
polynomial time and data [de la Higuera, 1997]. §6 introduces output-empty transducers,
which represent the learner’s a priori knowledge of the structure of the target transducer.
§7 presents the Structured Onward Subsequential Function Inference Algorithm (SOSFIA).
§8 proves that it identifies the target subclasses in the sense of de la Higuera [1997]. §9
presents several demonstrations of the SOSFIA using linguistically-motivated examples. §10
concludes.

2. Preliminaries

Let Σ denote a finite alphabet of symbols. Σn and Σ∗ denote the sets of strings of symbols
from Σ of length n and of any length, respectively. Let λ denote the empty string and |w|

95

Jardine Chandlee Eyraud Heinz

the length of string w. If u and v are strings, uv denotes their concatenation, and u−1w = v
iff w = uv. The prefixes of w are pref(w) = {u ∈ Σ∗ | (∃v)[uv = w]}.

A stringset (sometimes called a language) is any subset of Σ∗. The size of a finite
stringset S is the sum of the lengths of its elements and is denoted |S|. We extend the
notion of prefixes to stringsets with pref(S) = ∪w∈S pref(w). The shared prefixes of S are
the prefixes shared by all strings in S: sh pref(S) = ∩w∈S pref(w). The longest common
prefix (lcp) of S is then lcp(S) = w ∈ sh pref(S) such that ∀v ∈ sh pref(S) : |v| ≤ |w|.
We set the longest common prefix of the empty set to be λ.

Given an input alphabet Σ and an output alphabet ∆, a relation from Σ to ∆ is a subset
of Σ∗ ×∆∗. Given a relation t, we use dom(t) to refer to its left projection and image(t) its
right projection. If, for all w ∈ Σ∗, (w, v), (w, v′) ∈ τ ⇒ v = v′ then τ is a function, and we
often write t(w) = w′ instead of (w,w′) ∈ t. A function t is total iff for all w ∈ Σ∗ there
exists v ∈ ∆∗ such that (w, v) ∈ τ . A function that is not total is partial.

For any function t : Σ∗ → ∆∗ and w ∈ Σ∗, we define the tails of w with respect to
t as tailst(w) = {(x, v) | t(wx) = uv ∧ u = lcp(t(wΣ∗))}. Two strings w,w′ ∈ Σ∗ are
tail-equivalent with respect to t iff tailst(w) = tailst(w

′), in which case we write w ∼t w′.
Clearly, ∼t is an equivalence relation which partitions Σ∗. A function t is subsequential iff
∼t partitions Σ∗ into finitely many blocks.

3. Representations of Subsequential Functions

3.1. Traditional Subsequential Transducers

We give here the usual definition of subsequential transducer:

Definition 1 A subsequential finite-state transducer (SFST) is a 6-tuple 〈Q, q0,Σ,∆, δ, ρ〉
where Q is a finite set of states, q0 ∈ Q is the initial state, Σ and ∆ are finite alphabets
of symbols,1 δ ⊆ Q × Σ × ∆∗ × Q is the transition function, ρ : Q → ∆∗ is the output
function, and the following holds: if (q, σ, w, r), (q, σ, v, s) ∈ δ then (r = s) ∧ (w = v), i.e.
the transition function is deterministic.

The transition and output functions of a SFST may be partial. We extend the transi-
tion function to δ∗ recursively in the usual way: (q, λ, λ, q) ∈ δ∗; if (q, u, v, q′) ∈ δ∗ and
(q′, σ, w, q′′) ∈ δ then (q, uσ, vw, q′′) ∈ δ∗.

The relation described by a SFST τ is R(τ) = {(w, vv′) | (∃q)[(q0, w, v, q) ∈ δ∗ ∧ ρ(q) =
v′]}. However, since they are deterministic, SFSTs only describe functions: for every SFST,
each element of Σ∗ corresponds to at most one element of ∆∗. Therefore we write τ(w) = v
instead of (w, v) ∈ R(τ). We note that SFSTs compute total functions iff ∀qi ∈ Q,∀σ ∈ Σ,
there exist qj ∈ Q, v ∈ ∆∗ such that (qi, σ, v, qj) ∈ δ and ρ(q) is defined. The size of a SFST
τ = 〈Q, q0,Σ,∆, δ, ρ〉 is |τ | = |Q|+

∑
(q,σ,u,q′)∈δ |u|.

A well-known result is that for every subsequential function t, there is a subsequential
transducer τ which computes it (R(τ) = t), and likewise for every subsequential transducer
τ , R(τ) is a subsequential function [Oncina and Garćıa, 1991].

1. Notice that Σ can be equal to ∆, in which case we only specify one alphabet in the definition of a SFST.

96

Efficient Learning of structured classes of subsequential functions

3.2. Delimited Subsequential Transducers

Here we present an alternative representation of subsequential functions, which we call
delimited subsequential transducers and which are a slight variant of traditional SFSTs.

Definition 2 A delimited subsequential finite-state transducer (DSFST) is a 6-tuple
〈Q, q0, qf ,Σ,∆, δ〉 where Q is a finite set of states, q0 ∈ Q is the initial state, qf ∈ Q
is the final state, Σ and ∆ are finite alphabets of symbols, δ ⊆ Q× (Σ∪{o,n})×∆∗×Q is
the transition function (where o 6∈ Σ is a special symbol indicating the ‘start of the input’
and n 6∈ Σ is a special symbol indicating the ‘end of the input’), and the following hold:

1. if (q, σ, u, q′) ∈ δ then q 6= qf and q′ 6= q0,
2. if (q, σ, u, qf) ∈ δ then σ = n and q 6= q0,
3. if (q0, σ, u, q

′) ∈ δ then σ = o and if (q,o, u, q′) ∈ δ then q = q0,
4. if (q, σ, w, r), (q, σ, v, s) ∈ δ then (r = s) ∧ (w = v).

Pictorially, the initial state of a DSFT has no incoming transitions (1) and exactly one
outgoing transition whose input label is o (3) which leads to a nonfinal state (2); the final
state of a DSFT has no outgoing transitions (1) and every incoming transition comes from
a non-initial state and has input label n (2); and the DSFT is deterministic on the input
(4).

Extending the transition function as before, the relation described by a DSFST τ is
R(τ) = {(w, v) | (q0,own, v, qf) ∈ δ∗}. Again, the deterministic condition (requirement 4)
guarantees that DSFSTs define functions.

The difference between DSFSTs and SFSTs is that the delimiters o,n are employed
to mark the beginnings and ends of input strings when computing the transducer function.
Oncina et al. [1993] observe that an ‘end of the input’ delimiter can be used in place of
the output function ρ without changing the class of functions being described. Therefore,
the only real difference introduced here is the use of the ‘start of the input’ delimiter. It
is trivially true that the class of functions describable with DSFSTs is exactly the class
representable by SFSTs (i.e., the subsequential functions).

As explained in Section 4, the reason we introduce the ‘start of the input’ delimiter is
so that we can fix a structure with a DSFST and identify a canonical representation of the
function it describes without changing this structure.

We end this section with the following definitions: A state q in a DSFST τ is reachable
iff there exists w ∈ Σ∗, v ∈ ∆∗ such that (q0,ow, v, q) ∈ δ∗. A state q in a DSFST τ is
useful iff there exists w ∈ Σ∗, v ∈ ∆∗ such that (q, wn, v, qf) ∈ δ∗ and q is reachable. A
transducer is trimmed iff every state other than q0 and qf is useful.

3.3. Onward Transducers

An important concept for learning subsequential functions is the property of onwardness,
which we define here for DSFSTs.

Definition 3 A DSFST τ = 〈Q, q0, qf ,Σ,∆, δ〉 is onward iff the outgoing transitions of
each noninitial state share no nonempty prefix.

onward(τ)
def
=
(
∀q ∈ (Q− q0)

)[
lcp
{
w ∈ Σ∗|(∃a ∈ Σ, r ∈ Q)[(q, a, w, r) ∈ δ]

}
= λ

]
97

Jardine Chandlee Eyraud Heinz

Intuitively, a transducer is onward iff there is no delay in writing the output strings. As
the input symbols are consumed from left to right, the output is written the moment it is
determined. Onward SFSTs are discussed in detail in Oncina et al. [1993], as onwardness
plays a large role in the OSTIA learning algorithm. There, as here, onwardness helps
establish canonical forms for subsequential transductions.

Figures 1 and 2 (from Oncina and Garćıa [1991]) illustrate the differences between SFSTs
and Onward SFSTs: these SFSTs represent the same function but Figure 1 is onward while
Figure 2 is not onward, and cannot be made so without modifying its structure. For
comparison, Figure 3 is a DSFST and Figure 4 is an onward DSFST, and both represent
the same function shown in Figures 1 and 2.

Figure 1: Onward SFST Figure 2: SFST

Figure 3: A DSFST Figure 4: An onward DSFST

4. Deriving an Onward DSFST

We prove the following theorem which says for any DSFST τ , there is an onward DSFST
with the exact same structure which recognizes the same function described by τ .

Theorem 4 For any trimmed DSFST τ = 〈Q, q0, qf ,Σ,∆, δ〉, there is an onward trimmed
DSFST τ ′ = 〈Q, q0, qf ,Σ,∆, δ′〉 such that R(τ) = R(τ ′) and (q, a, u, q′) ∈ δ iff there exists
u′ ∈ ∆∗ and (q, a, u′, q′) ∈ δ′.

The proof of the above theorem makes use of a function push lcp which takes as arguments
a transducer τ and a state q of τ and returns a transducer τ ′ in which the longest common
prefix of the outputs of the transitions leaving q is pushed as a suffix onto the outputs of
the transitions entering q (if they exist).

Definition 5 (push lcp) push lcp
(
〈Q, q0, qf ,Σ,∆, δ〉, q ∈ Q

)
= 〈Q, q0, qf ,Σ,∆, δ′〉 where

δ′ =
{

(q, σ, x−1ux, q) | (q, σ, u, q) ∈ δ
}

∪
{

(q, σ, x−1u, q′) | (q, σ, u, q′) ∈ δ
}

∪
{

(q′, σ, ux, q) | (q′, σ, u, q) ∈ δ
}

∪ (δ \ {(q1, σ, u, q2) | q1 = q ∨ q2 = q})

and x = lcp
({
u | (∃q′, σ)[(q, σ, u, q′) ∈ δ]

})
.

98

Efficient Learning of structured classes of subsequential functions

In this definition, the first part of the union corresponds to reflexive transitions of the state
q: the output of the transition is modified such that the lcp x of the outgoing transitions
of q is not a prefix anymore, but is instead added as a suffix in order not to modify the
transduction (see proof of lemma 6). The second part of the union concerns the non-reflexive
outgoing transitions from q: the lcp is erased from the outputs of all of these transitions.
The third part concerns the incoming transitions of q: the lcp is added as a suffix to the
outputs of all these transitions. Finally, the last part of the union ensures that of the
original transitions, only the unmodified ones are still present in the new set of transitions.

First we observe that pushing the lcp does not change the function described by a
DSFST.

Lemma 6 Let τ = 〈Q, q0, qf ,Σ,∆, δ〉 be a trimmed DSFST. For all q ∈ Q, we have R(τ) =
R(push lcp(τ, q)).

Proof Let q ∈ Q and (v, w) ∈ R(τ). Then there exist σ1, . . . , σn in Σ such that v =
σ1 . . . σn, ∀i, 1 ≤ i ≤ n (qi, σi, ui, qi+1) ∈ δ, q1 = q0, qn+1 = qf , and w = u1 . . . un. Consider
τ ′ = push lcp(τ, q).

As the result trivially holds for q = q0, suppose q 6= q0 and let w′ = τ ′(v). Since
q 6= q0 and τ is trimmed, there is always at least one incoming transition into q and
hence a place for the lcp to be pushed back to. Since push lcp only modifies the
output string of some transitions, it is the case that w′ = u′1 . . . u

′
n, with ∀i, 1 ≤ i ≤ n

(qi, σi, u
′
i, qi+1) ∈ δ′. Let x = lcp({u : (q, σ, u, q′) ∈ δ}) and i1, . . . , ik (k < n) the indices

such that qij = q, for 1 ≤ j ≤ k. We have u′ij−1 = uij−1x and u′ij = x−1uij . Thus

w′ = u1 . . . (ui1−1x)(x−1ui1) . . . (uik−1x)(x−1uik) . . . un = w

Notice that this proof is not possible without the initial transition with the start de-
limiter. In Figure 2, applying something like push lcp to state 1 modifies the represented
function: for instance, (λ, bc) is replaced in the relation by (λ, c). Under the traditional
definition of subsequential transducers, making a transducer onward without changing the
function it recognizes sometimes requires changing its structure by adding a new initial
state (cf. Figure 1). This can happen when there are incoming transitions to the initial
state. It it precisely this situation we avoid using DSFSTs, which by definition, have no
incoming transitions to the initial state (condition 3, Definition 2).
Proof [Theorem 4] Since τ is a DSFST, q0 has only one transition to one other state. So
we can always push back to this transition without creating non-onwardness. We can cycle
through the other states pushing back the lcp. The number of times we have to push the
lcp is finite. This is because the number of times we might need to push from a state q is
limited by the length of the output function of state q. Therefore, pushing will lead to an
onward DSFST without, by Lemma 6, changing the transduction.

The DSFST of Figure 3 corresponds to the SFST of Figure 2 after applying push lcp once
to state 1, and the DSFST of Figure 4 shows the onward result of recursively applying
push lcp according to the proof of Theorem 4.

In the rest of the paper, we are only considering onward, trimmed, delimited transducers.

99

Jardine Chandlee Eyraud Heinz

5. Learning Paradigm

The capability of the algorithm detailed in Section 8 is demonstrated in the identification in
the limit learning paradigm [Gold, 1967], with polynomial bounds on time and data [de la
Higuera, 1997]. The underlying idea of the paradigm is that if the data available to the
algorithm so far does not contain enough information to distinguish the target from other
potential targets, then it is impossible to learn.

We first need to define the following notions. A class T of functions is represented by
a class R of representations if every r ∈ R is of finite size and there is a naming function
L : R → T which is both total and surjective. We observe that the class of subsequential
functions can be represented by the class of DSFSTs.

Definition 7 Let T be a class of functions represented by some class R of representations.

1. A sample S for a function t ∈ T is a finite set of data consistent with t, that is to say
(w, v) ∈ S iff t(w) = v. The size of a sample S is the sum of the length of the strings
it is composed of: |S| =

∑
(w,v)∈S |w|+ |v|.

2. A (T,R)-learning algorithm A is a program that takes as input a sample for a function
t ∈ T and outputs a representation from R.

The paradigm relies on the notion of characteristic sample, adapted here for functions:

Definition 8 (Characteristic sample) For a (T,R)-learning algorithm A, a sample CS
is a characteristic sample of a function t ∈ T if for all samples S for t such that CS ⊆ S,
A returns a representation r such that, for all w ∈ dom(t), r(w) = t(w).

This definition is the one used in the proof of the OSTIA algorithm. We are actually using
the strongest version:

Definition 9 (Strong characteristic sample) For a (T,R)-learning algorithm A, a
sample CS is a strong characteristic sample of a representation r ∈ R if for all samples S
for L(r) such that CS ⊆ S, A returns r.

The learning paradigm can now be defined as follows.

Definition 10 (Strong identification in polynomial time and data) A class T of
functions is strongly identifiable in polynomial time and data (SIPTD) if there exists a
(T,R)-learning algorithm A and two polynomials p() and q() such that:

1. For any sample S of size m for t ∈ R, A returns a hypothesis r ∈ R in O(p(m)) time.
2. For each representation r ∈ R of size k, there exists a strong characteristic sample of

r for A of size at most O(q(k)).

For a discussion about (weak and) strong identification in the limit, the reader is referred
to Clark [2014].

100

Efficient Learning of structured classes of subsequential functions

6. Target Classes

Output-empty transducers provide the a priori structural information that will allow learn-
ing of the function. A DSFST is output-empty if all of its transition outputs are blanks (�).

Definition 11 An output-empty transducer τ� is a DSFST 〈Q, q0, qf ,Σ, {�}, δ〉 such that
for all (q, a, u, q′) ∈ δ, u = �.

An output-empty transducer τ� defines a class of functions T which is exactly the set of
functions which can be created by taking the states and transitions of τ� and replacing the
blanks with output strings, maintaining onwardness.

Definition 12 The class of functions T described by an output-empty DSFST τ� =
〈Q, q0, qf ,Σ, {�}, δ〉 is:

Tτ� =
{
t | ∃τ = 〈Q, q0, qf ,Σ,∆, δτ 〉 s.t. ∀(q, w, v, r) ∈ δτ , (q, w,�, r) ∈ δ

and ∀(q, w,�, r) ∈ δ, ∃v ∈ ∆∗ : (q, w, v, r) ∈ δτ ;

t(τ) and onward(τ)
}

Lemma 13 For all τ�, all t ∈ Tτ� are subsequential functions.

Proof From Definitions 1, 11, and 12.

We observe there are infinitely many DSFSTs and therefore infinitely many such classes.
Also, for each τ�, each class Tτ� contains infinitely many functions since there is no upper
bound on the length of output strings.

7. The Inference Algorithm

The Structured Onward Subsequential Function Inference Algorithm (SOSFIA) takes as
input an output-empty transducer τ�, and a finite sample S from a target function t ∈ Tτ� .
SOSFIA then iterates through the states of τ�. At each state, it sets the output of each
outgoing transition to be the minimal change in the output generated by this transition,
according to S. To calculate this, we first define the common output of an input prefix w.

Definition 14 The common output of an input prefix w in a sample S ⊂ Σ∗×∆∗ for t is
the lcp of all t(wv) that are in S: common outS(w) = lcp({u ∈ Σ∗ | ∃v s.t. (wv, u) ∈ S})

The minimal change in the output is then simply the difference between the common
outputs of w and wσ.

Definition 15 The minimal change in the output in S ⊂ Σ∗ ×∆∗ from w to wσ is:

min changeS(σ,w) =

{
common outS(σ) if w = λ
common outS(w)−1common outS(wσ) otherwise

101

Jardine Chandlee Eyraud Heinz

This gives us exactly the output needed to maintain onwardness, which will in turn guaran-
tee that the SOSFIA converges to the correct function, provided that the sample contains
enough information. Note that the minimal change is calculable for S because it is finite.
The algorithm is presented below.

Data: A sample S ⊂ oΣ∗ n×∆∗, an output-empty DSFST τ� = 〈Q, q0, qf ,Σ, {�}, δ〉
Result: τ� as a DSFST with filled transitions
F ← empty Queue
Push(F, (q0, λ))
mark(q0)
while F is not empty do

(q, w)← Shift F irst(F)
for σ ∈ Σ ∪ {o,n} in lexicographic order do

for δi = (q, σ,�, q′) ∈ δ do
if there exists σ′ 6= σ such that (q, σ′, u, q′′) ∈ δ then

Change δi to (q, σ, v, r), where v = min changeS(w, σ)
else

Change δi to (q, σ, λ, r)
if q′ is not marked then

Push(F, (q′, wσ))
mark(q′)

return τ�;
Algorithm 1: Structured Onward Subsequential Function Inference Algorithm (SOSFIA)

The SOSFIA does a breadth-first parsing of the output-empty DSFST, storing in the
queue F (a First-In/First-Out data type) seen but untreated states together with the small-
est prefix that leads to each of these states: this is ensured by the lexicographic order in
which the letters are considered and by the fact that only unmarked states (i.e., states
that have not been discovered so far) are pushed into F . When a state is treated, all its
outgoing transitions are considered. The output of this transition is set to be the result of
the min change function on the shortest prefix arriving at this state and the input letter of
the transition, unless it is the only transition leaving this state in which case the output is
set to be λ.2

8. The Theoretical Learning Result

Let τ = 〈Q, q0, qf ,Σ, δ〉 be a DSFST. We define min pref(q) = min{w ∈ oΣ∗n :
(q0, w, u, q) ∈ δ∗}.

Lemma 16 (Characteristic Sample) Let τ∗ = 〈Q, q0, qf ,Σ, δ∗〉 be the target DSFST.
Consider any finite sample S which meets the following requirements:

• For all (q, σ, u, q′) ∈ δ∗, q 6= q0, there exists (vσv′, w) in S, with v = min pref(q),

2. It may be possible to replace the entire if/then/else statement with only the part between then and else
(so changing δi to (q, σ, v, r)). However, this appears to significantly complicate the identification proof,
and obfuscate the central ideas and insights. Hence we present the algorithm as shown.

102

Efficient Learning of structured classes of subsequential functions

• For all q ∈ Q for which at least two outgoing transitions exist, for all (q, σ, s, q′) ∈ δ∗,
if there exists q1, . . . , qn ∈ Q such that

1. q′ = q1, and
2. ∀i < n, qi has only one outgoing transition and (qi, σi, λ, qi+1) ∈ δ∗, and
3. (qn−1, σn, s, p) ∈ δ, and
4. there exist σ′ 6= σn such that (qn−1, σ

′, s′, p′) ∈ δ∗ and lcp(s, s′) = λ

then there exists (vσσ1 . . . σnw, z) and (vσσ1 . . . σn−1σ
′w′, z′) in S, with both being an

element of the target function and v = min pref(q).

Any sample S fulfilling these requirements is a strong characteristic sample for the SOSFIA.

Notice that the third and fourth items are possible only for onward transducers.
Proof Suppose that a sample CS fulfilling the requirements of Lemma 16 is contained in S.
Let τA = 〈Q, q0, qf ,Σ, δA〉 be the transducer returned by the algorithm on S. To establish
strong identification, it is sufficient to show that the output of every transition in δA is
correct (since other parts of τA are given by τ�). Let (q, σ, s, q′) ∈ δ∗ and v = min pref(q).

If there is no other outgoing transition from q, then s = λ as τA is onward. By the
definition of the algorithm, (q, σ, λ, q′) ∈ δA.

Suppose now that there exist several transitions from the state q. By construction of the
sample (first item), there exists (vσv′, u) in S. Therefore, by the definition of the learning
algorithm: (q, σ, min changeS(v, σ), q′) ∈ δA.

Suppose q 6= q0. As q admits several outgoing transitions, there exists (q, σ1, s1, q1) and
(q, σ2, s2, q2) in δ∗ such that lcp(s1, s2) = λ. By construction of the sample, ∃v1, v2, u1, u2
such that (vσ1v1, u1) and (vσ2v2, u2) are in the sample. We then have lcp(u1, u2) = x and
therefore common outS(v) = x.

By the definition of a function, xs ∈ pref(common outS(vσ)). If q′ = qf then
(vσ, xs) is in S as there is no outgoing transition from the final state. Therefore xs =
common outS(vσ)) and then min change(v, σ) = s.

Suppose now that q 6= qf . By construction, there exists (vσσ1 . . . σnw, u) and
(vσ1 . . . σn−1σ

′w′, u′) in the sample. We have (q′, σ1 . . . σn−1, λ, q
′′) ∈ δ∗∗ , therefore u =

xss1v1 and u′ = xss2v2, where (q′′, σn, s1, p) ∈ δ∗ and (q′′, σ′, s2, p
′) ∈ δ∗ and lcp(s1, s2) = λ.

Therefore xs = common outS(vσ) and then min change(v, σ) = s. Hence, (q, σ, s, q′) ∈ δA.
The proof for the case q = q0 is of similar nature.

Lemma 17 (Time Complexity) Consider a target transducer τ and a characteristic
sample S and let m be the length of the longest string in the right projection of S, and
n = |S|. The overall time complexity for the SOSFIA is O(n ·m).

Proof The while loop is executed exactly |Q| times since every state is considered once
and only once. Then the two for loops are executed overall |Σ| · card(δ) times since each
transition is modified only once (card(δ) is the cardinality of δ). In the worst case, the
algorithm launches min change for each transition, which corresponds to the computation
of two lcp. Each of these calculations is doable in O(n ·m) with an adapted structure for
storing strings (e.g., prefix tree acceptor). The overall time complexity of the algorithm is

103

Jardine Chandlee Eyraud Heinz

thus in O(n ·m) since |Q| and card(δ) are fixed.

Lemma 18 (Data Complexity) The size of a characteristic sample defined in Lemma 16
for a target DSFST τ = 〈Q, q0, qf ,Σ,∆, δ〉 is O(|τ |).

Proof One needs at most |Q| elements to fulfill the first requirement. Each of these string
pairs can have a left projection of length at most |Q| and a right projection of length at most∑

(q,σ,u,q′)∈δ |u|. This is due to the fact that in the worst case these elements correspond to
a parsing through all states and all transitions of τ (in case τ admits cycles, longer elements
can be considered, but we focus only on the smallest ones in this proof). Therefore the
size of this part of the characteristic sample is in O(|Q| · (|Q|+ |τ |)) = O(|τ |) since |Q| is a
constant for each target class.

The number of elements needed for a sample to fulfill the second item of the definition
is at most 2 · card(δ). For the same reason as previously, these elements can have a left
projection of length at most |Q| and a right projection of length at most

∑
(q,σ,u,q′)∈δ |u|.

The size of this second part of the characteristic sample is thus in O(card(δ) · |τ |) = O(|τ |)
as the cardinality of δ is fixed for each target class.

Theorem 19 For every output-empty transducer τ�, the SOSFIA strongly identifies Tτ�
in polynomial time and data.

Proof For any τ� and any τ ∈ Tτ� , Lemma 16 establishes that SOSFIA outputs τ for
any sample which includes a characteristic sample CS of τ . Lemma 17 establishes that
SOSFIA produces this output in linear time with respect to the size of CS. Lemma 18
establishes the size of CS is linear in the size of τ .

It is worth mentioning that the algorithm presented in this paper returns a function even
given incomplete data. With a sacrifice in added time complexity linear to the sum of the
length of the left projection of the sample, the algorithm can be modified so that it checks
if any element of the sample uses a transition it is about to modify. If this is not the case
it can stop since it is sure that the data is not sufficient for learning. We have opted not to
include this functionality, as this is not enough to guarantee that there is sufficient data to
calculate the output for the transition (as it is still unknown whether all the input/output
pairs necessary to calculate the correct output for that transition are in the data). Further
work may explore efficient ways of giving the learner this functionality.

It should be interesting to also compare the subclasses of subsequential transductions
learnable with SOSFIA and those with OSTIA-D, OSTIA-R, and OSTIA-DR. We conjec-
ture that SOSFIA and OSTIA-D correspond to the same class of learnable transductions.

9. Demonstrations

The applicability of subsequential transducers to natural language phonology and morphol-
ogy has been discussed in detail bt Mohri [1997] and Beesley and Karttunen [2003]. Briefly,

104

Efficient Learning of structured classes of subsequential functions

morphological operations can be thought of as a transformation from a bare form to an
affixed form, and a foundational principle of modern generative phonology is that there is a
phonological mapping from abstract, lexical ‘underlying’ representations of words and mor-
phemes to their concrete surface pronunciations [Hayes, 2011]. In this section we present
several demonstrations of the SOSFIA using linguistically-motivated examples.

9.1. Input Strictly Local Functions

As mentioned above, Chandlee [2014] shows that the input-output mapping of many phono-
logical processes can be modeled with Input Strictly Local (ISL) functions. The automata-
theoretic characterization of these functions provides sufficient structure for the SOSFIA
to identify them in the limit. We tested the learner on three example ISL functions, all of
which can be thought of as phonological ‘repairs’ that prevent a surface output sequence
Dn (where D is a voiced obstruent). One is to ‘devoice’ a final voiced sound (e.g., a ‘d’
sound), changing instead to a voiceless one (e.g., a ‘t’ sound). The others are to delete the
voiced sound or to epenthesize (insert) a vowel in between the voiced sound and the word
edge. The examples are summarized in (1).

(1) Process Rule

Final devoicing D → T / n
Deletion D → ∅ / n
Epenthesis ∅ → V / D n

Using an alphabet that represents common sound categories Σ = {D, T, N, V}, where again
D is a voiced obstruent (e.g., ‘b’, ‘d’, ‘z’, ‘g’) T is a voiceless obstruent (e.g., ‘p’, ‘t’, ‘s’, ‘k’),
N is a sonorant consonant (nasal sounds and ‘l’ and ‘r’), and V is a vowel, we constructed
a data set of 1365 string pairs. The left projection of the data set is Σ≤5; each string in
the left projection was paired with an output string according to the target function. The
same output-empty transducer was used in all three test cases, as the DSFST for each rule
only differs in terms of the output strings. The output of the SOSFIA is correct in all
three cases; as an example, the resulting machine for the final devoicing test case is given
in Figure 5. The machines for the deletion and epenthesis cases were identical, except for
that in the deletion case the transition from state 2 to state 6 has an output of λ, and in the
epenthesis case every transition into state 2 on D has an output of D and the transitions
out of state 2 are as follows: (2, D,D, 2), (2, T, T, 3), (2, V, V, 5), (2, N,N, 4), (2,n, V, 6).

9.2. Non-ISL Phonological Processes

There also exist phonological processes that cannot be modeled with ISL functions. These
are ‘long-distance’ processes such as the sibilant harmony process attested in Samala. In
this language, all sibiliant sounds (e.g., ‘s’, ‘S’) in a word must be the same as the rightmost
one [Applegate, 1972; Hansson, 2010]. An example is shown in (2).

(2) /hasxintilawaS/ 7→ [haSxintilawaS] ‘his former gentile name’

Using the (simplified) alphabet Σ = {s, S, t, a}, we constructed a dataset of string pairs
in which the left projection is Σ≤4. Each of these strings was paired with one in which all

105

Jardine Chandlee Eyraud Heinz

1 3T:T

2D:λ

5

V:V

4

N:N

6

⋉:λ

0
⋊:λ

T:T

D:λ

V:V

N:N

⋉:λ

T:DT

D:D

V:DV

N:DN

⋉:T

T:T

D:λ

V:V

N:N

⋉:λ

T:T

D:λ

V:V

N:N

⋉:λ

Figure 5: Final devoicing test case

1

t:t
a:a

3

S:S

2s:s 4

⋉:!

0
⋊:!

a:a

S:S
t:t

s:S

⋉:!

S:s

t:t

s:s
a:a

⋉:!

Figure 6: Sibilant harmony test case

sibiliants (if any) assimilate to the rightmost one. As shown in Figure 6, the output of the
SOSFIA correctly models this process.

Two things should be noted about this test case. One is that this process is right subse-
quential; however, all this entails is that the input and output strings must be reversed to
get the correct mapping. This has no effect on how the learner functions (for details on right
subsequential functions in phonology, see [Heinz and Lai, 2013]). Two, the output-empty
DSFST given to the learner includes separate states for words in which ‘s’ is the rightmost
sibiliant and words in which ‘S’ is the rightmost sibilant (i.e., the a priori knowledge given
to the learner identifies the set of segments involved in the process). This is akin to phono-
logical theories in which certain classes of segments (here the sibilants) are represented on
distinct tiers (e.g., vowel harmony; [Clements, 1976]).

9.3. Morphological Parsing

The learner was also tested on a morphology-to-phonology function, as discussed in [Beesley
and Karttunen, 2003], in which the meanings of morphemes are mapped to their pronun-
ciations. The data were from Swahili verbs [Hayes, 2011], which show a series of prefixes
indicating person, number, and tense. The morphological breakdown of nimenipenda ‘I
have liked myself’ is given in (3).3 The learner was given an empty transducer represent-
ing the possible morpheme orders and 90 pairs of the shape <morpheme string, phoneme
string>, as exemplified in (4). The learner correctly learned the morphological function;
i.e., for any transition on ‘1-nom’ it learned that the output should be ‘ni’.

(3) ni + me + ni + penda
1-acc perf 1st-nom like

‘I have liked myself’

(4) 1-nom+perf+1-acc+like, nimenipenda
3-nom+pres+1-acc+like, ananipenda
2-nom+perf+1-pl-acc+beat, umetupiga

3. Abbreviations: 1st-acc = first person accusative (‘me’); 1-nom = first person nominative (‘I’); 1-pl-acc
= first person plural accusative (‘us’); 2-nom = second person nominative (‘we’); 3-nom = third person
nominative (‘he’); pres = present tense; perf = perfect tense.

106

Efficient Learning of structured classes of subsequential functions

10. Conclusion

This paper has made two contributions. One, we introduced DSFSTs and showed that,
unlike SFSTs, they can be made onward without modifying their structure. Second, we
introduced a learning algorithm for proper subclasses of subsequential functions in which
all member functions share a DSFST structure. There are infinitely many such classes, each
with infinitely many member functions. While the learner is given a significant amount
of prior knowledge in the form of the output-empty transducer representing the class of
functions, this allows for extremely efficient learning measured in both time and data. We
have also shown specific applications for the learner in the linguistic domains of phonology
and morphology.

Acknowledgments

We thank reviewers of this paper for their helpful comments. This research was supported
by NSF grant CPS#1035577.

References

Richard Applegate. Inseño Chumash grammar. PhD thesis, University of California, Berke-
ley, 1972.

Kenneth R. Beesley and Lauri Karttunen. Finite State Morphology. CSLI Publications,
2003.

Antonio Castellanos, Enrique Vidal, Miguel A. Varó, and José Oncina. Language under-
standing and subsequential transducer learning. Computer Speech and Language, 12:
193–228, 1998.

Jane Chandlee. Strictly Local Phonological Processes. PhD thesis, University of Delaware,
2014.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. Learning strictly local subsequential
functions. Transactions of the Association for Computational Linguistics, to appear.

Alexander Clark. Inference of inversion transduction grammars. In ICML, pages 201–208,
2011.

Alexander Clark. Learning trees from strings: A strong learning algorithm for some context-
free grammars. Journal of Machine Learning Research, 14:3537–3559, 2014.

Georges N. Clements. Vowel harmony in nonlinear generative phonology: an autosegmental
model. Indiana University Linguistics Club, 1976.

Colin de la Higuera. Characteristic sets for polynomial grammatical inference. Machine
Learning Journal, 27:125–138, 1997.

Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cam-
bridge University Press, 2010.

Pedro Garćıa, Enrique Vidal, and José Oncina. Learning locally testable languages in the
strict sense. In Proceedings of the Workshop on Algorithmic Learning Theory, pages
325–338, 1990.

Mark E. Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

107

Jardine Chandlee Eyraud Heinz

Gunnar Ólafur Hansson. Consonant harmony: long-distance interaction in phonology.
Berkeley, CA: University of California Press, 2010.

Bruce Hayes. Introductory Phonology. John Wiley & Sons, 2011.

Jeffrey Heinz and Regine Lai. Vowel harmony and subsequentiality. In Andras Kornai and
Marco Kuhlmann, editors, Proceedings of the 13th Meeting on Mathematics of Language,
Sofia, Bulgaria, 2013.

Jeffrey Heinz and James Rogers. Learning subregular classes of languages with factored
deterministic automata. In Andras Kornai and Marco Kuhlmann, editors, Proceedings of
the 13th Meeting on the Mathematics of Language (MoL 13), pages 64–71, Sofia, Bulgaria,
August 2013. Association for Computational Linguistics.

Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press, 1971.

Mehryar Mohri. Finite-state transducers in language and speech processing. Computational
Linguistics, 23(2):269–311, 1997.

José Oncina and Pedro Garćıa. Inductive learning of subsequential functions. Technical
Report DSIC II-34, Univ. Politécnia de Valencia, 1991.

José Oncina and Pedro Garćıa. Inferring regular languages in polynomial update time,
chapter -. World Scientific Publishing, 1992.

José Oncina and Miguel A. Varò. Using domain information during the learning of a
subsequential transducer. Lecture Notes in Computer Science - Lecture Notes in Artificial
Intelligence, pages 313–325, 1996.

José Oncina, Pedro Garćıa, and Enrique Vidal. Learning subsequential transducers for pat-
tern recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15:448–458, May 1993.

108

	Introduction
	Preliminaries
	Representations of Subsequential Functions
	Traditional Subsequential Transducers
	Delimited Subsequential Transducers
	Onward Transducers

	Deriving an Onward DSFST
	Learning Paradigm
	Target Classes
	The Inference Algorithm
	The Theoretical Learning Result
	Demonstrations
	Input Strictly Local Functions
	Non-ISL Phonological Processes
	Morphological Parsing

	Conclusion

