The Analog Ensemble Kalman Filter and Smoother - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

The Analog Ensemble Kalman Filter and Smoother

Résumé

The amount of observational and model-simulated data in geosciences has grown rapidly since the early 1980s. These data, still widely underexploited, has a unique potential for the modeling and prediction of geophysical space-time dynamics. Here, we show how a statistical emulator, based on a catalog of historical datasets, and a sequential Monte Carlo filter and smoother, provide a relevant data-driven analog assimilation of complex dynamics. As an illustration, we consider the chaotic Lorenz-63 model.
Fichier principal
Vignette du fichier
Tandeo_abstract_climate_informatics_Boulder_2014.pdf (1.67 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01188825 , version 1 (31-08-2015)

Identifiants

  • HAL Id : hal-01188825 , version 1

Citer

Pierre Tandeo, Pierre Ailliot, Ronan Fablet, Juan Ruiz, François Rousseau, et al.. The Analog Ensemble Kalman Filter and Smoother. CI 2014 : 4th International Workshop on Climate Informatics, Sep 2014, Boulder, United States. ⟨hal-01188825⟩
428 Consultations
133 Téléchargements

Partager

More