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THE ANALOG ENSEMBLE KALMAN
FILTER AND SMOOTHER

Pierre Tandeo1, Pierre Ailliot2, Ronan Fablet1, Juan Ruiz3, Bertrand Chapron4

Abstract—In classical data assimilation using sequen-
tial Monte Carlo methods, a physical model is run at
each time steps to simulate members corresponding to
different forecast scenarios. In this paper, we propose
to use statistical analogs provided by observational or
model-simulated data to emulate the dynamical model and
generate relevant forecast members. This new methodology
is called AnEnKF/AnEnFS for Analog Ensemble Kalman
Filter and Smoother. We test our methodology using the
Lorenz-63 model. The simulations indicate that, for a
rich analog database, the assimilation results with the
AnEnKF/AnEnFS are comparable to those obtained using
the Lorenz dynamical equations into a classical Ensemble
Kalman Filter/Smoother.

I. MOTIVATION

Data assimilation methods combines information of
a physical dynamical model and observations (see e.g.,
[1] and reference therein). Nowadays, due to their flex-
ibility, sequential Monte Carlo filters are widely used
in geoscience ([2]). In these methods, several members
are generated and compared to the observations at each
time step. This generally leads to intensive computation
in practical applications since the physical model need
to be run with different initial conditions at each time
step in order to generate the members. This number of
members must be high enough to explore the state space
of the physical model.

The amount of observational and model-simulated
data has grown very quickly in the last decades. These
datasets may now provide enough information to build
realistic statistical emulators of the dynamics of the
geophysical variables and generate members at a lower
computational cost compared to running a physical dy-
namical model. In this study, we propose to use the
analog (or nearest neighbors) method to generate the
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members ([3]) and the classical Ensemble Kalman recur-
sions to combine these members with the observations
(see [1] for more details). The feasibility of our method
is illustrated on the classical Lorenz-63 model ([4]).

II. METHOD

Sequential data assimilation techniques are generally
formulated using a nonlinear state space model (see e.g.
[2])

xt =M(xt−1,ηt) (1)

yt = H(xt, εt) . (2)

The dynamical (or ”process”) model given in Eq. (1)
describes the evolution of the ”true” geophysical process
xt and includes a random perturbation ηt which accounts
for the various sources of uncertainties (e.g. bound-
ary conditions, forcing terms, physical parameterization,
etc...). The observation (or ”data”) model given in Eq.
(2) links the observation yt with the true state at the
same time t. It also includes a random noise εt which
models observation error, change of support and so on.

Fig. 1. Scheme of the Analog Ensemble Kalman Filter.

The main originality of the methodology proposed
in this paper consists in using statistical analogs to
approximate the dynamical model given in Eq. (1). More
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precisely, as illustrated in Fig. 1 (”Forecast step”), we
assume that a catalog describing the time evolution of
the state xt is available. This catalog is used to build an
emulator of the dynamical model M and the associated
error η which can be run much faster than the physical
model. In practice, if xt−1 denotes the state at time t−1,
then the analogs are the points in the catalog which
are close to xt−1 and the successors of these analogs
may be used to generate possible forecast states of the
geophysical process at time t. Here, to select the best
analogs, we use a classical machine learning algorithm:
the k-Weighted Nearest Neighbors (k-WNN).

Then, as described in Fig. 1 (”Analysis step”), this
estimate can then be plugged in a standard algorithm
(e.g. Kalman recursions or particle filters) to estimate
the filtering or smoothing probabilities for the state space
model (1-2). The convergence of these estimated filtering
and smoothing probabilities to the true ones, when the
size of the catalog tends to infinity, is discussed in [5]. In
the next section, we perform a simulation study to assess
the behavior of the method on a classical toy example
which has been extensively used in the literature on data
assimilation.

III. NUMERICAL EVALUATION

Here, we generate three different datasets (true state,
noisy observations and analog database) using the ex-
act Lorenz-63 differential equations with the classical
parameters ρ = 28, σ = 10, β = 8/3 and the delta
time dt = 0.01. From a random initial condition and
after 500 time steps, the trajectory converges to the
attractor and we start to generate the data. At each time
t, the corresponding Lorenz trajectory is given by the
variables x, y and z. We store the three variables in the
true state vector x(t). Then, we randomly generate the
observations y(t) as the sum of the state vector and a
Gaussian white noise with variance 2. To generate the
analog database, we use another random initial condition
and after 500 time steps, we start to store the consecutive
states vectors x(t) in the analog database.

In this paper, we assimilate the noisy observations y(t)
with (i) the classical EnKF/EnKS using the Pure Dynam-
ical Model (PDM) corresponding to the exact Lorenz-
63 differential equations and (ii) the AnEnKF/AnEnKS
using the Analog Dynamical Model (ADM) evalu-
ated at each iteration using the k-WNN algorithm.
We perform different simulations varying (j) the time
step between two consecutive observations dtobs =
{0.01, 0.08, 0.24, 0.40} and (jj) the size of the analog
database n = {103, 104, 105, 106}. For each experiment,
we compute the Root Mean Square Error (RMSE) be-
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Fig. 2. Root Mean Square Error for the three variables of the Lorenz-
63 model as a function of the size of the training database n and
the observation time sampling dtobs. Full and straight lines represent
respectively the reanalysis results for the EnKS using PDM and the
AnEnKS using ADM.

tween the true state and the different reanalysis obtained
by the smoothing probabilities using N = 100 members.

Experiment results are given in Fig. 2. As benchmark
curves, in dashed lines, we plot the results of the classical
EnKS using the PDM. In full lines, we can see the rapid
decrease of the error when the size of the analog database
n increases (x-axis in log scale). It also shows that the
difference of RMSE between the two kinds of reanalysis
(PDM and ADM) decreases when the time step (and thus
the forecast error) between two consecutive observations
dtobs increases (colours in legend).

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we show that the statistical combination
of Monte Carlo members and k-WNN procedures is
able to model the nonlinearities of the chaotic Lorenz-
63 model. In future works, we plan to apply this
AnEnKF/AnEnKS methodology to archives of remote
sensing data and model-simulated data for the interpo-
lation of geophysical parameters at the surface of the
ocean. We also plan to use the analogs together with
more flexible particle filters and smoothers.
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