Short time heat diffusion in compact domains with discontinuous transmission boundary conditions - Archive ouverte HAL
Article Dans Une Revue Mathematical Models and Methods in Applied Sciences Année : 2016

Short time heat diffusion in compact domains with discontinuous transmission boundary conditions

Résumé

We consider a heat problem with discontinuous diffusion coefficients and discontinuous transmission boundary conditions with a resistance coefficient. For all compact $(\epsilon,\delta)$-domains $\Omega\subset\mathbb{R}^n$ with a $d$-set boundary (for instance, a self-similar fractal), we find the first term of the small-time asymptotic expansion of the heat content in the complement of $\Omega$, and also the second-order term in the case of a regular boundary. The asymptotic expansion is different for the cases of finite and infinite resistance of the boundary. The derived formulas relate the heat content to the volume of the interior Minkowski sausage and present a mathematical justification to the de Gennes' approach. The accuracy of the analytical results is illustrated by solving the heat problem on prefractal domains by a finite elements method.
Fichier principal
Vignette du fichier
GeneralChaleurPreprint.pdf (580.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01186761 , version 1 (07-09-2015)

Identifiants

Citer

Claude Bardos, Denis S Grebenkov, Anna Rozanova-Pierrat. Short time heat diffusion in compact domains with discontinuous transmission boundary conditions. Mathematical Models and Methods in Applied Sciences, 2016, 26 (1), pp.59. ⟨10.1142/S0218202516500032⟩. ⟨hal-01186761⟩
284 Consultations
190 Téléchargements

Altmetric

Partager

More