On the interval of strong partial clones of Boolean functions containing Pol({(0,0),(0,1),(1,0)}) - Archive ouverte HAL
Article Dans Une Revue Algebra Universalis Année : 2017

On the interval of strong partial clones of Boolean functions containing Pol({(0,0),(0,1),(1,0)})

Résumé

D. Lau raised the problem of determining the cardinality of the set of all partial clones of Boolean functions whose total part is a given Boolean clone. The key step in the solution of this problem, which was obtained recently by the authors, was to show that the sublattice of strong partial clones on {0, 1} that contain all total functions preserving the relation ρ 0,2 = {(0, 0), (0, 1), (1, 0)} is of continuum cardinality. In this paper we represent relations derived from ρ 0,2 in terms of graphs, and we define a suitable closure operator on graphs such that the lattice of closed sets of graphs is isomorphic to the dual of this uncountable sublattice of strong partial clones. With the help of this duality, we provide a rough description of the structure of this lattice, and we also obtain a new proof for its uncountability.
Fichier principal
Vignette du fichier
9999_3.pdf (411.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01184404 , version 1 (14-08-2015)

Identifiants

Citer

Miguel Couceiro, Lucien Haddad, Karsten Schölzel, Tamas Waldhauser. On the interval of strong partial clones of Boolean functions containing Pol({(0,0),(0,1),(1,0)}) . Algebra Universalis, 2017, 77 (1), pp. 101-123. ⟨10.1007/s00012-016-0418-8⟩. ⟨hal-01184404⟩
176 Consultations
129 Téléchargements

Altmetric

Partager

More