Poster De Conférence Année : 2015

New Adaptive Selection Strategies for Distributed Adaptive Metaheuristic Selection

Résumé

Distributed Adaptive Metaheuristics Selection (DAMS) is a framework dedicated to adaptive optimization in distributed environments. We investigate the design of adaptive strategies allowing to control the local selection of metaheuristics and to coordinate their local executions with the aim of maximizing the performance of the whole distributed system. Inspired by the multi-armed bandit framework, we propose two distributed strategies. Our experimental analysis is performed on the simple oneMax problem for which the best metaheuristics that should be executed is known.
Fichier principal
Vignette du fichier
pap522.pdf (139 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01178619 , version 1 (09-09-2021)

Identifiants

Citer

Christopher Jankee, Sébastien Verel, Bilel Derbel, Cyril Fonlupt. New Adaptive Selection Strategies for Distributed Adaptive Metaheuristic Selection. Sara Silva; Anna I. Esparcia-Alcázar. GECCO '15: Genetic and Evolutionary Computation Conference, Jul 2015, Madrid, Spain. Association for Computing Machinery (ACM), GECCO Companion '15: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp.1405-1406, 2015, ⟨10.1145/2739482.2764694⟩. ⟨hal-01178619⟩
160 Consultations
54 Téléchargements

Altmetric

Partager

More