Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data

Résumé

Let u be a solution to a quasi-linear Klein-Gordon equation in one-space dimension, $\Box u + u = P (u, ∂_t u, ∂_x u; ∂_t ∂_x u, ∂^2_x u)$ , where P is a homogeneous polynomial of degree three, and with smooth Cauchy data of size $ε → 0$. It is known that, under a suitable condition on the nonlinearity, the solution is global-in-time for compactly supported Cauchy data. We prove in this paper that the result holds even when data are not compactly supported but just decaying as $\langle x \rangle^ {−1}$ at infinity, combining the method of Klainerman vector fields with a semiclassical normal forms method introduced by Delort. Moreover, we get a one term asymptotic expansion for u when $t → +∞$.
Fichier principal
Vignette du fichier
Quasi-linear KG.pdf (456.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01172523 , version 1 (07-07-2015)

Identifiants

Citer

Annalaura Stingo. Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data. 2015. ⟨hal-01172523⟩
210 Consultations
86 Téléchargements

Altmetric

Partager

More