Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities - Archive ouverte HAL
Article Dans Une Revue Annals of Probability Année : 2018

Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities

Résumé

In this work we consider dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities. For this we use optimal transport methods and the Borell-Brascamp-Lieb inequality. These refinements can be written as a deficit in the classical inequalities. They have the right scale with respect to the dimension. They lead to sharpened concentration properties as well as refined contraction bounds, convergence to equilibrium and short time behaviour for the laws of solutions to stochastic differential equations.
Fichier principal
Vignette du fichier
HAL4-Bolley-Gentil-Guillin--IFOdim.pdf (411.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01171361 , version 1 (03-07-2015)
hal-01171361 , version 2 (05-10-2015)
hal-01171361 , version 3 (09-11-2016)
hal-01171361 , version 4 (12-03-2017)

Identifiants

Citer

François Bolley, Ivan Gentil, Arnaud Guillin. Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities. Annals of Probability, 2018, 46 (1), pp.261-301. ⟨10.1214/17-AOP1184⟩. ⟨hal-01171361v4⟩
776 Consultations
485 Téléchargements

Altmetric

Partager

More