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In this work we consider dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities. For this we use optimal transport methods and the Borell-Brascamp-Lieb inequality. These refinements can be written as a deficit in the classical inequalities. They have the right scale with respect to the dimension. They lead to sharpened concentration properties as well as refined contraction bounds, convergence to equilibrium and short time behavior for the laws of solutions to stochastic differential equations.

Introduction

We shall be concerned with diverse ways of measuring and bounding the distance between probability measures, and the links between them. We will focus on three main inequalities that we now describe.

• A probability measure µ on R n satisfies a logarithmic Sobolev inequality (in short LSI) with constant R > 0 (see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] for instance) if for all probability measures ν in R n , absolutely continuous with respect to µ,

H(ν|µ) ≤ 1 2R I(ν|µ). (1) 
Here H and I are the relative entropy and the Fisher information, defined for f = dν dµ by

H(ν|µ) = Ent µ (f ) = f log f dµ and I(ν|µ) = |∇f | 2 f dµ. (2) 
For I we assume that ∇f /f ∈ L 2 (ν).

• A probability measure µ in R n satisfies a Talagrand transportation inequality [START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF] with constant R > 0 if for all ν absolutely continuous with respect to µ

W 2 2 (ν, µ) ≤ 2 R H(ν|µ). (3) 
Here W 2 is the Monge-Kantorovich-Wasserstein distance; it is defined for µ and ν in P 2 (R n ) by

W 2 (µ, ν) = inf π |y -x| 2 dπ(x, y) 1/2
where π runs over the set of (coupling) measures on R n × R n with respective marginals µ and ν. We let P 2 (R n ) be the space of probability measures µ on R n with finite second moment, that is, |x| 2 dµ(x) < +∞ (see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], [START_REF] Villani | Optimal transport, Old and new[END_REF]). By the Otto-Villani Theorem [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF], the logarithmic Sobolev inequality (1) implies the Talagrand inequality (3) with the same constant (see also [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF], [START_REF] Villani | Optimal transport, Old and new[END_REF]Chap. 22]).

• Let µ be a probability measure in R n with density e -V where V is a C 2 and strictly convex function.

Then the Brascamp-Lieb inequality asserts that for all smooth functions f ,

Var µ (f ) ≤ ∇f • Hess(V ) -1 ∇f dµ. (4) 
Here Var µ (f ) = f 2 dµ -( f dµ) 2 is the variance of f under the measure µ, see [4, Sect 4.9.1] for instance.

The standard Gaussian measure γ in R n with density e -V for V (x) = |x| 2 /2 + n log(2π)/2, satisfies the three inequalities (1), (3) with R = 1 and (4). In fact, in the Gaussian case, the Brascamp-Lieb inequality (4) can be obtained from (1) by linearization, namely by taking ν = f µ with f close to 1.

Let us note that in this case Hess(V ) = Id n , the Brascamp-Lieb inequality becomes exactly the Poincaré inequality. Moreover these inequalities are optimal for the Gaussian measure: by direct computation, equality holds in (1) and ( 3) for translations of γ, that is, for measures ν = exp(a • x -|a| 2 2 )γ with a ∈ R n ; equality holds in [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Chap. 4 and 5]).

for f (x) = b • x, b ∈ R n (see
Inequalities [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], ( 3) and ( 4) share the significant property of tensorisation, leading to possible constants R independent of the dimension of the space. In other words, if a probability measure µ satisfies one of these three inequalities with constant R > 0, then for any N ∈ N * , the product measure µ N = ⊗ N µ satisfies the same inequality with the same constant R. This can be interesting in applications to problems set in large or infinite dimensions. However, for regularity or integrability arguments, one may need more precise forms capturing the precise dependence on the dimension. Such dimension dependent improvements have been observed in the Gaussian case. Namely, the dimensional improvement

H(ν|γ) ≤ 1 2 |x| 2 dν - n 2 + n 2 log 1 + 1 n I(ν|γ) + n -|x| 2 dν (5) 
of the logarithmic Sobolev inequality [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] has been obtained by D. Bakry and M. Ledoux [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF] by selfimprovement from the Euclidean logarithmic Sobolev inequality, or by semigroup arguments on the Euclidean heat semigroup (see also [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Sect. 6.7.1] and the early work [START_REF] Carlen | Superadditivity of Fisher's information and logarithmic Sobolev inequalities[END_REF] by E. Carlen). The dimensional improvement

W 2 2 (ν, γ) ≤ |x| 2 dν + n -2n exp |x| 2 2n dγ - 1 2 - 1 n H(ν|γ) (6) 
of the Talagrand inequality (3) has been derived in [START_REF] Bakry | Dimension dependent hypercontractivity for Gaussian kernels[END_REF]; the argument is based on local hypercontractivity techniques on an associated Hamilton-Jacobi semigroup and fine properties of the heat semigroup. It has further been observed in [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF] that linearizing [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF] leads to the dimensional improvement

Var γ (f ) ≤ |∇f | 2 dγ - 1 2n (|x| 2 -n)f dγ 2 (7) 
of the Brascamp-Lieb (or Poincaré) inequality (4) for the Gaussian measure (see also [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Sect. 6.7.1]). On the other hand, by a spectral analysis of the Ornstein-Uhlenbeck semigroup, the bound

Var γ (f ) ≤ 1 2 |∇f | 2 dγ + 1 2 ∇f dγ 2 (8) 
has been established in [START_REF] Goldstein | Gaussian phase transitions and conic intrinsic volumes: Steining the Steiner formula[END_REF]Sect. 6.2]. By the Cauchy-Schwarz inequality, it improves upon [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]. Naturally, both inequalities [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] and [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF] are optimal, and equality holds for f (x) = a • x; equality also holds for f (x) = |x| 2 , in fact for the first two Hermite polynomials. The above proofs of ( 5), [START_REF] Barthe | Mass transport and variants of the logarithmic Sobolev inequality[END_REF] and [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF] are very specific to the Gaussian case and can not be extended to other measures.

These dimensional improvements can also be written as a deficit in the classical non dimensional versions (1), ( 3), (4) of the inequalities: namely, for the logarithmic Sobolev (LSI in short) and Talagrand (T al in short) inequalities, lower bounds on the quantities

δ LSI (ν|µ) := 1 2 I(ν|µ) -R H(ν|µ) and δ T al (ν|µ) := H(ν|µ) - R 2 W 2 2 (ν, µ).
The problem of dimensional refinements of standard functional inequalities has been recently considered in an intensive manner. Via the development of refined optimal transportation tools, beautiful results for the Gaussian isoperimetric inequality were obtained by Figalli-Maggi-Pratelli [START_REF] Figalli | A mass transportation approach to quantitative isoperimetric inequalities[END_REF] (see also R. Eldan [START_REF] Eldan | A two-sided estimate for the Gaussian noise stability[END_REF] or [START_REF] Figalli | A sharp stability result for the relative isoperimetric inequality inside convex cones[END_REF] for convex cones). Further recent results have been established on deficit in the logarithmic Sobolev inequality in the Gaussian case by Figalli-Maggi-Pratelli [START_REF] Figalli | Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation[END_REF], Indrei-Marcon [START_REF] Indrei | A quantitative log-Sobolev inequality for a two parameter family of functions[END_REF] and Bobkov & al [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF]. In particular [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF] rediscovers [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF] and extends earlier results obtained in dimension one by on the Talagrand deficit. Fathi-Indrei-Ledoux [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF] also considers these deficits, particularly emphasizing the case where ν has additional properties, such as a Poincaré inequality ensuring a better constant in the logarithmic Sobolev inequality. Very recently D. Cordero-Erausquin [START_REF] Cordero-Erausquin | Transport inequalities for log-concave measures, quantitative forms and applications[END_REF] has studied refinements of the Talagrand and Brascamp-Lieb inequalities via optimal transport tools.

Let us also quote C. Villani [39, p. 605]:

There is no well-identified analog of Talagrand inequalities that would take advantage of the finiteness of the dimension to provide sharper concentration inequalities as a motivation to investigate further the problem. As we will see there are other striking applications of these dimensional refinements than sole concentration. Finally recall that the so-called Bakry-Émery criterion (or Γ 2 -criterion) ensures that the measure µ with density e -V satisfies the logarithmic Sobolev inequality (1) and Talagrand inequality (3) as soon as the potential V satisfies Hess(V ) ≥ R Id n with R > 0, as symmetric matrices. One of the goals of this paper is to extend the above dimensional inequalities under this condition with R > 0 or only Hess(V ) > 0.

For this we shall use multiple tools and we will compare our inequalities with other recent extensions. Applications to concentration inequalities and short and long time behaviour for the laws of solutions to stochastic differential equations are also given.

Plan of the paper and main results

Let µ be a probability measure on R n with density e -V where V is C 2 .

In Section 1, we propose a method based on the Borell-Brascamp-Lieb inequality to get dimensional logarithmic Sobolev inequalities in the spirit of the works [START_REF] Bobkov | From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities[END_REF][START_REF] Bobkov | Weighted Poincaré-type inequalities for Cauchy and other convex measures[END_REF] by S. Bobkov and M. Ledoux. The method is based on a general convexity inequality given in Theorem 1.1. For instance, in Corollary 1.4 we shall prove the following :

If Hess(V ) ≥ R Id n with R > 0, then Ent µ (f 2 ) ≤ n(s -1 -log s) + 1 2R (1 -s)∇V + 2s ∇f f 2 f 2 dµ (9)
for any s > 0 and any function f such that f 2 dµ = 1. This improves upon the classical logarithmic Sobolev inequality (1) under the Bakry-Émery condition, which is recovered for s = 1.

In Section 2 (Theorem 2.1) we propose a dimensional Talagrand inequality through optimal transportation in the spirit of and D. Cordero-Erausquin [START_REF] Cordero-Erausquin | Some applications of mass transport to Gaussian type inequalities[END_REF] or the recent [START_REF] Cordero-Erausquin | Transport inequalities for log-concave measures, quantitative forms and applications[END_REF] :

If Hess(V ) ≥ R Id n with R > 0 then R 2 W 2 2 (µ, ν) ≤ ν(V ) -µ(V ) + n -n exp 1 n ν(V ) -µ(V ) -H(ν|µ) (10) 
for all ν ∈ P 2 (R n ). This bound implies the classical Talagrand inequality (3). Let us observe that, using the terminology of the Γ 2 -condition, the associated Markov generator L = ∆ -∇V • ∇ does not satisfy a CD(R, n) curvature dimension condition, but only CD(R, ∞). In particular the general dimensional log Sobolev or Talagrand inequalities, obtained on manifolds (see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]) or on abstract measure spaces (as in [START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[END_REF]) do not hold. In Section 2.1 we show how the dimensional corrective term in our new Talagrand inequality enables to get sharp concentration inequalities.

Inspired by recent results on the equivalence between contraction and CD(R, n) condition in abstract measure spaces (see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[END_REF][START_REF] Bolley | Equivalence between dimensional contractions in Wasserstein distance and curvature-dimension condition[END_REF]), in Section 3 we consider applications to refined dimensional contraction properties under CD(R, ∞) (see Proposition 3.3 and Corollary 3.8); we shall see how the dimension improves the asymptotic behaviour for the laws of solutions to stochastic differential equations (in the spirit of [START_REF] Bolley | Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations[END_REF][START_REF] Bolley | Dimensional contraction via Markov transportation distance[END_REF]). Again the generator L = ∆ -∇V • ∇ does not satisfy a CD(R, n) condition, but only CD(R, ∞). The key point here is to take advantage of the contribution of the diffusion term, which includes a dimensional term. We shall also see how the dimension influences the short time smoothing effect, through very simple arguments (see Proposition 3.1).

In section 4 we prove two kinds of dimensional Brascamp-Lieb inequalities, a first one by a L 2 argument, a second one by a linearization argument in the Borell-Brascamp-Lieb inequality. For instance, under the sole assumption Hess(V ) > 0, Theorem 4.3 states that

Var µ (f ) ≤ ∇f • Hess(V ) -1 ∇f dµ - (f -∇f • Hess(V ) -1 ∇V ) 2 n + ∇V • Hess(V ) -1 ∇V dµ (11) 
for any smooth function f such that f dµ = 0. We shall discuss the optimality of our bounds and compare them with other very recent dimensional refinements of the Brascamp-Lieb inequality.

In the Gaussian case where µ = γ, then the logarithmic Sobolev (9) (by optimising over s) and Talagrand [START_REF] Bobkov | From Brunn-Minkowski to sharp Sobolev inequalities[END_REF] inequalities are exactly ( 5) and ( 6) respectively, while the Poincaré inequality [START_REF] Bobkov | Weighted Poincaré-type inequalities for Cauchy and other convex measures[END_REF] improves upon [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF].

Notation: whenever there is no ambiguity we shall respectively use H, I, W 2 , δ LSI and δ T al for H(ν|µ), I(ν|µ), W 2 (ν, µ), δ LSI (ν|µ) and δ T al (ν|µ). We shall sometimes let Ent dx (f ) = f log f dx and µ(f ) = f dµ and use the same notation for an absolutely continuous measure with respect to Lebesgue measure, and its density.

Logarithmic Sobolev inequalities

The Prékopa-Leindler inequality is a reverse form of the Hölder inequality. Let F , G, H be non-negative measurable functions on R n satisfying F dx = Gdx = 1, and let s, t ≥ 0 be fixed such that t + s = 1. Under the hypothesis

H(tx + sy) ≥ F (x) t G(y) s (12) 
for any x, y ∈ R n , the Prékopa-Leindler inequality ensures that Hdx ≥ 1, see [START_REF] Villani | Optimal transport, Old and new[END_REF]Chap. 19] for instance. The Borell-Brascamp-Lieb inequality is a stronger and dimensional form of the Prékopa-Leindler inequality. Assume again F dx = Gdx = 1 and in addition that F , G and H are positive; then the Borell-Brascamp-Lieb inequality asserts that Hdx ≥ 1 as soon as

H(tx + sy) ≥ tF (x) -1/n + sG(y) -1/n -n (13) 
for any x, y ∈ R n , instead of the stronger (12) (by convexity); see again [START_REF] Villani | Optimal transport, Old and new[END_REF].

The Prékopa-Leindler inequality in particular implies many geometrical and functional inequalities as logarithmic Sobolev and Brascamp-Lieb inequalities, as observed by S. Bobkov and M. Ledoux in [START_REF] Bobkov | From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities[END_REF][START_REF] Bobkov | Weighted Poincaré-type inequalities for Cauchy and other convex measures[END_REF] (see also [START_REF] Gentil | From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality[END_REF] for an application to the modified logarithmic Sobolev inequality). In the coming sections we shall see how the Borell-Brascamp-Lieb inequality implies dimensional form of these inequalities. Following S. Bobkov and M. Ledoux [START_REF] Bobkov | From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities[END_REF][START_REF] Bobkov | Weighted Poincaré-type inequalities for Cauchy and other convex measures[END_REF] our proofs are based on Taylor expansions when s → 0 or F → 0. 

ψ(x) = ∇ψ(x) • x -ψ * (∇ψ(x)) and ∇ψ * (∇ψ(x)) = x. ( 14 
)
Theorem 1.1 (Convexity inequality) Let g, W be C 1 and positive functions on R n satsifying the normalization condition g -n dx = W -n dx = 1. Assume moreover that there exists a constant C > 0 such that for all x ∈ R n ,

W (x) ≥ 1 C |x| 2 2 , (H1) 1 C (|x| 2 + 1) ≤ g(x) ≤ C(|x| 2 + 1) and |∇g(x)| ≤ C(|x| + 1). ( H2 
)
Then W * (∇g) g n+1 dx ≥ 0. ( 15 
)
If W is a C 1 positive and strictly convex function which satisfies (H1) and W -n dx = 1, then (15) is an equality for g = W .

The same statement can be proved for a larger class of functions g and W . We only state this result with these restrictive hypotheses for simplicity reasons, as this setting will be sufficient for our main application. The rigorous proof is postponed to the Appendix A. The idea is to perform a Taylor expansion of the Borell-Brascamp-Lieb inequality (13) when s = 1 -t goes to 0. Indeed, let F = g -n and G = W -n in (13), hence satisfying F dx = Gdx = 1. Then the function H t defined by

H t (z) -1/n = inf h∈R n tg z + s t h + sW (z -h) (16) 
for z ∈ R n satisfies H t dx ≥ 1. The first-order Taylor expansion of H t , when s = 1 -t goes to 0, gives

H t (z) = g(z) -n -s n g(z) -n-1 z • ∇g(z) -g(z) + s n W * (∇g(z)) g n+1 (z) + o(s). Since g -n-1 (z • ∇g -g) dx = 0
by integration by parts, the Taylor expansion of H t dx ≥ 1 implies the inequality [START_REF] Carlen | Superadditivity of Fisher's information and logarithmic Sobolev inequalities[END_REF].

Applications of Theorem 1.1 are described in the coming two sections. They are based on the following observation. Let V be a given function and let W = e V n . Then, from the convexity of the exponential function, for any a ∈ R and y ∈ R n , W * (y) ≤

1 n e a V * (ne -a y) + (a -1)e a .

Combined with Theorem 1.1, this gives the following corollary which is the main tool in our applications:

Corollary 1.2 Under the hypotheses of Theorem 1.1, let V = n log W . Then for any function a, 1 g n+1 e a V * (ne -a ∇g) + n(a -1)e a dx ≥ 0.

(17)

Euclidean logarithmic Sobolev inequalities

As a warm up, let us first see how to quickly recover the classical Euclidean logarithmic Sobolev inequality, using [START_REF] Cordero-Erausquin | Transport inequalities for log-concave measures, quantitative forms and applications[END_REF]. Let C : R n → R + be a strictly convex function such that e -C dx < +∞, and let us apply [START_REF] Cordero-Erausquin | Transport inequalities for log-concave measures, quantitative forms and applications[END_REF] with V = C + β and W = e V /n ; here β = log e -C dx so that e -V dx = 1. Since V is convex and e -V dx < +∞, it is classical that V grows at least linearly at infinity, so that W satisfies hypothesis (H1) . Then let p > 1. Let also f be a C 1 positive function such that f p dx = 1 and g = f -p/n satisfies (H2), and let a = -p n log f + u where u is a real constant. Then V * = C * -β and ( 17) can be written as

∀u ∈ R, f p log(f p ) dx ≤ n(u -1) -β + C * -pe -u ∇f f f p dx. ( 18 
)
We can optimise over u in R in the following case. Suppose that there exists q > 1 such that C is q-homogeneous, that is, C(λx) = λ q C(x) for any λ ≥ 0 and x in R n . Then C * is p-homogeneous with 1/p+1/q = 1, and in particular above C * (-pe -u ∇f /f ) = p p e -pu f -p C * (-∇f ). Thus inequality [START_REF] Daneri | Lecture notes on gradient flows and optimal transport[END_REF] gives

f p log(f p ) dx ≤ n(u -1) -β + e -pu p p C * (-∇f ) dx (19) 
for any function f such that f p dx = 1 and f -n/p satisfies (H2). Now, let f be a C 1 non negative and compactly supported function and for ε >

0 let f ε (x) = C ε (ε(|x| 2 + 1) -n/p + f ), where C ε is such that (f ε ) p dx = 1. The function f -n/p ε
satisfies (H2) for any ε. Taking the limit when ε goes to 0, inequality [START_REF] Pino | The optimal Euclidean L p -Sobolev logarithmic inequality[END_REF] then holds for any C 1 non negative and compactly supported function f such that

f p dx = 1. For the optimal u = p -1 log ( p p+1 C * (-∇f )dx/n), the bound (19) leads to f p log(f p ) dx ≤ n p log p p+1 ne p-1 C * (-∇f )dx ( e -C dx) p/n
for any C 1 non negative and compactly supported function f such that f p dx = 1. Of course, the inequality can be extended to a larger class of functions f . Hence, we recover the optimal L p -Euclidean log Sobolev inequality proved in [START_REF] Pino | The optimal Euclidean L p -Sobolev logarithmic inequality[END_REF][START_REF] Gentil | The general optimal L p -Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations[END_REF] and in particular, setting C(x) = |x| 2 /2 and p = q = 2, the classical inequality

f 2 log(f 2 ) dx ≤ n 2 log 2 nπe |∇f | 2 dx .

Dimensional logarithmic Sobolev inequalities

In this section we consider a probability measure µ with density e -V and the function W = e V /n , and a positive function f such that f 2 dµ = 1. We assume again that V is convex ; then W = e V /n satisfies hypothesis (H1) since e -V dx = 1. Corollary 1.2 applied with g = e V /n f -2/n (assuming that g satisfies hypothesis (H2)) and a = V n - x) dx be a probability measure with V a convex function and let f be a C 1 positive function such that f 2 dµ = 1 and such that g = e V /n f -2/n satisfies hypothesis (H2). Then for any s > 0

2 n log f + u with u ∈ R gives V * e -u ∇V -2e -u ∇f f + V -log(f 2 ) + n(u -1) f 2 e -V dx ≥ 0. Corollary 1.3 Let dµ(x) = e -V (
Ent µ (f 2 ) ≤ V * s∇V -2s ∇f f + V f 2 dµ -n(1 + log s). (20) 
For s = 1, inequality (20) simplifies as

Ent µ (f 2 ) ≤ V * ∇V -2 ∇f f + V -n f 2 dµ, f 2 dµ = 1.
In particular, for V = |x| 2 2 + n 2 log(2π), then µ is the standard Gaussian measure γ and we recover the Gaussian logarithmic Sobolev inequality of L. Gross,

Ent γ (f 2 ) ≤ 2 |∇f | 2 dγ, f 2 dγ = 1.
More generally, let V be a strictly convex function on R n . Then inequality [START_REF] Eldan | A two-sided estimate for the Gaussian noise stability[END_REF] with s = 1, by ( 14) and integration by parts, leads to the modified logarithmic Sobolev inequality

Ent µ (f 2 ) ≤ V * ∇V -2 ∇f f + 2x • ∇f f -V * (∇V ) f 2 dµ, f 2 dµ = 1
proved by the second author in [START_REF] Gentil | From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality[END_REF].

Assuming uniform convexity on V we now optimise over the parameter s > 0 in Corollary 1.3, to obtain dimensional logarithmic Sobolev inequalities. Suppose that V is C 2 with Hess(V ) ≥ R Id n for R > 0. Then, for their inverse matrices, Hess(V * ) ≤ R -1 Id n on R n . Hence, for any z and by the Taylor expansion at point ∇V (x),

V * (z) + V (x) ≤ V * (∇V (x)) + ∇V * (∇V (x)) • (z -∇V (x)) + 1 2R |z -∇V (x)| 2 + V (x) = x • z + 1 2R |z -∇V (x)| 2 .
Here we use the relations [START_REF] Bolley | Equivalence between dimensional contractions in Wasserstein distance and curvature-dimension condition[END_REF]. For z = s∇V -2s ∇f f at point x, and by [START_REF] Eldan | A two-sided estimate for the Gaussian noise stability[END_REF], this leads to

Ent µ (f 2 ) ≤ -n(1 + log s) + s x • ∇V -2 ∇f f f 2 dµ + 1 2R s∇V -2s ∇f f -∇V 2 f 2 dµ.
By integration by parts and extending to compactly supported functions, as for ( 19), we finally obtain:

Corollary 1.4 (Dimensional LSI under Γ 2 -condition) Let µ be a probability measure with density e -V where V is C 2 with Hess(V ) ≥ R Id n for R > 0. Then Ent µ (f 2 ) ≤ n(s -1 -log s) + 1 2R (1 -s)∇V + 2s ∇f f 2 f 2 dµ ( 21 
)
for any s > 0 and any C 1 , non-negative and compactly supported function f such that f 2 dµ = 1.

The bound can of course be extended to other classes of functions f . When s = 1, we recover the classical logarithmic Sobolev inequality (1) under the Bakry-Émery condition.

Let us observe that the right-hand side in ( 21) can be expanded as -n log s plus a second order polynomial in s. Hence it admits a unique minimiser s > 0, which solves a second order polynomial. The obtained expression is not appealing and we prefer to omit it. In the Gaussian case where µ = γ, then the optimisation over s gets even simpler and leads again to the dimensional Gaussian log Sobolev inequality [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF]. Moreover, for a general V and as in [START_REF] Lisini | Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces[END_REF] or [START_REF] Figalli | A sharp stability result for the relative isoperimetric inequality inside convex cones[END_REF] below for the Talagrand inequality, the bound ( 21) can be written as a (not either appealing) deficit in the log Sobolev inequality.

We will see in Section 3.1 that (21) leads to new and sharp short time smoothing on the entropy of solutions to an associated Fokker-Planck equation.

Talagrand inequalities

The main result of this section is Theorem 2.1 (Dimensional Talagrand inequality) Let µ be a probability measure in

P 2 (R n ) with density e -V where V is a C 2 function satisfying Hess(V ) ≥ R Id n with R > 0. Then for all ν ∈ P 2 (R n ) R 2 W 2 2 (µ, ν) ≤ ν(V ) -µ(V ) + n -n exp 1 n ν(V ) -µ(V ) -H(ν|µ) . (22) 
In other words, if Hess(

V ) ≥ R Id n , then ν(V ) -µ(V ) -R 2 W 2 2 (ν, µ) > -n and δ T al (ν|µ) ≥ max δ n H(ν|µ) + µ(V ) -ν(V )) , Λ n ν(V ) -µ(V ) - R 2 W 2 2 (ν, µ) . (23) 
Here δ n and Λ n are the positive functions respectively defined by

δ n (x) = n[e -x/n -1 + x/n], x ∈ R and Λ n (x) = x -n log(1 + x/n), x > -n.
The function δ 1 (x) = e -x -1 + x is positive and convex. It is moreover decreasing on R -and increasing on R + . By a direct computation, δ 1 (x) is bounded from below by

x 2 /2 if x ≤ 0, x 2 /e if 0 ≤ x ≤ 1 and
x/e if x > 1; hence always by 1 e min(|x|, x 2 ). Then for any x ∈ R, δ n (x) ≥ 1 e min(|x|, x 2 n ). Since e u ≥ 1 + u, the bound [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF] implies the classical Talagrand inequality (3) under the condition Hess(V ) ≥ R Id n . When µ is the standard Gaussian measure γ on R n , then R = 1 and we recover the dimensional Talagrand inequality [START_REF] Barthe | Mass transport and variants of the logarithmic Sobolev inequality[END_REF].

Under a moment condition Theorem 2.1 simplifies as follows:

Corollary 2.2 Following the same assumptions as in Theorem 2.1, for all

ν in P 2 (R n ) with ν(V ) ≤ µ(V ), δ T al (ν|µ) ≥ δ n (H(ν|µ)) ≥ 1 e min H(ν|µ), H(ν|µ) 2 n . ( 24 
)
Theorem 2.1 will be deduced from the following dimensional HW I-type inequality, applied with f = 1 and ν = gµ. The HW I inequality bounds from above the entropy by the Wasserstein distance and the Fisher information (defined in (2)), in the form

H(ν|µ) ≤ W 2 (ν, µ) I(ν|µ) - R 2 W 2 2 (µ, ν) (25) 
for all ν. It has been introduced in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] and proved in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] and [START_REF] Cordero-Erausquin | Some applications of mass transport to Gaussian type inequalities[END_REF] under the Bakry-Émery condition

Hess(V ) ≥ R Id n , R ∈ R.
Theorem 2.3 (Dimensional HW I inequality) Let µ be a probability measure on R n with density e -V where V is a C 2 function satisfying Hess(V ) ≥ R Id n with R ∈ R. Let also f, g be smooth functions such that f µ and gµ belong to P 2 (R n ). Then

n exp 1 n H(f µ|µ) -H(gµ|µ) + µ(gV ) -µ(f V ) -n ≤ µ(gV ) -µ(f V ) + W 2 (f µ, gµ) I(f µ|µ) - R 2 W 2 2 (f µ, gµ).
For g = 1 and ν = f µ, this bound can be written as the dimensional HW I inequality

n exp 1 n H(ν|µ) + µ(V ) -ν(V ) -n ≤ µ(V ) -ν(V ) + W 2 (µ, ν) I(ν|µ) - R 2 W 2 2 (µ, ν). (26) 
As in [START_REF] Figalli | A sharp stability result for the relative isoperimetric inequality inside convex cones[END_REF] for the Talagrand inequality, this can equivalently be written as a deficit in the HW I inequality.

It is classical that the HW I inequality (25) implies the logarithmic Sobolev inequality (1) (see [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] for instance). Likewise, from [START_REF] Figalli | Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation[END_REF], one can obtain a dimension dependent logarithmic Sobolev inequality. We refer to Section 2.5 for further details. The proof of Theorem 2.3 will be given in Section 2.4.

An application to concentration

Let us quickly revisit K. Marton's argument for concentration via Talagrand's inequality (as in [START_REF] Villani | Optimal transport, Old and new[END_REF]Chap. 22] for instance) and see how the refined inequality [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF] in Theorem 2.1 gives sharpened information for large deviations.

Let dµ = e -V dx satisfy inequality [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF]. Let also A ⊂ R n , r > 0 and A r = {x; ∀y ∈ A, |y -x| > r}. Let finally µ A = 1A µ(A) µ and µ Ar = 1A r µ(Ar ) µ be the restrictions of µ to A and A r . Then, as W 2 is a distance,

r ≤ W 2 (µ A , µ Ar ) ≤ W 2 (µ A , µ) + W 2 (µ Ar , µ).
First of all 22), or its weaker form [START_REF] Bakry | Dimension dependent hypercontractivity for Gaussian kernels[END_REF]. Let now c V = V dµ, x r = H(µ Ar |µ) = log(1/µ(A r )) and V r = V dµ Ar . By [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF] again we get, for r > c A , (r

W 2 (µ A , µ) ≤ 2R -1 H(µ A |µ) = 2R -1 log(1/µ(A)) := c A by (
-c A ) 2 ≤ W 2 2 (µ Ar , µ) ≤ 2 R V r -c V + n -n exp - 1 n (x r + c V -V r ) .
Since x r = log(1/µ(A r )) we obtain :

Corollary 2.4 (Concentration inequality) Following the same assumptions as in Theorem 2.1, let 

A ⊂ R n , r > 0 and A r = {x; ∀y ∈ A, |y -x| > r}, c A = 2R -1 log(1/µ(A)), c V = V dµ, V r = V dµ Ar . Then for r > c A µ(A r ) ≤ e cV -Vr 1 + 1 n V r -c V - R 2 (r -c A ) 2 n . Since (1 + u/n) n ≤ e u ,
C = C(p, n) such that for all r > C µ(|x| > r + 1) = µ(A r ) ≤ exp c V -V r + n log(1 + V r /n) .
But V r ≥ r p +Z p , so for all ε < 1 there exists another constant C depending also on ε such that for all r > C

µ(|x| > r) ≤ e -(1-ε)r p .
This concentration inequality in this precise example can also be obtained by using a L p -Talagrand inequality or a L p -log Sobolev inequality; however we have found it interesting to get it by means of the dimension dependence of the classical Talagrand inequality, moreover in a shorter and more straightforward manner.

Tensorisation and comparison with earlier results

In R n , let W 1 be the Wasserstein distance between probability measures, for the cost |y -x|, x, y ∈ R n . Deficit in the Gaussian Talagrand inequality (for µ = γ) and for centered measures ν has been investigated in one dimension in [START_REF] Barthe | Mass transport and variants of the logarithmic Sobolev inequality[END_REF] and [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF], in the form

δ T al (ν|γ) ≥ c inf π R×R Λ(|y -x|)dπ(x, y) ≥ c min W 1 (ν, γ) 2 , W 1 (ν, γ) .
Here the c's are diverse numerical constants and the infimum runs over couplings π of γ and ν. This second lower bound has been extended in [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF]Th. 5] to any dimension n, as

δ T al (ν|γ) ≥ c min W 1,1 (ν, γ) 2 n , W 1,1 (ν, γ) √ n (27) 
as soon as ν has mean 0; here c is a numerical constant independent of the dimension n, and on

R n × R n W 1,1 (µ, ν) = inf π R n ×R n n i=1 |y i -x i | dπ(x, y).
Still under a centering condition, the bound [START_REF] Gentil | The general optimal L p -Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations[END_REF] has been improved in [START_REF] Cordero-Erausquin | Transport inequalities for log-concave measures, quantitative forms and applications[END_REF]Prop. 3] by replacing the quantity W 1,1 / √ n by the larger W 1 Wasserstein distance on R n , and extended to reference measures µ with density e -V where Hess(V ) ≥ R Id n .

In comparison, our bound [START_REF] Figalli | A sharp stability result for the relative isoperimetric inequality inside convex cones[END_REF] has the following two advantages : it holds without any centering condition on ν, and gives a lower bound on the deficit in terms of the relative entropy H : this is a strong way of measuring the gap between measures, by the Pinsker inequality for instance (see [START_REF] Villani | Optimal transport, Old and new[END_REF]Chap. 22]), and the relative entropy can be much larger than the weak distance W 2 . As considered in [START_REF] Cordero-Erausquin | Transport inequalities for log-concave measures, quantitative forms and applications[END_REF] and [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF], a natural example is the product measure case when µ N = ⊗ N µ and ν N = ⊗ N ν on R nN for N ∈ N * . Then δ T al (ν N |µ N ) = N δ T al (ν|µ) by tensorisation properties of both H and W 2 2 . However, the above bound [START_REF] Gentil | The general optimal L p -Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations[END_REF] in [START_REF] Cordero-Erausquin | Transport inequalities for log-concave measures, quantitative forms and applications[END_REF] (so with

W 1 instead of W 1,1 / √ n) gives a lower bound on δ T al (ν N |µ N ) equal to a constant c times min W 1 (ν N , µ N ) 2 , W 1 (ν N , µ N ) ≤ min W 2 (ν N , µ N ) 2 , W 2 (ν N , µ N ) = min N W 2 (ν, µ) 2 , √ N W 2 (ν, µ) since W 1 ≤ W 2 .
Hence this lower bound has the good order in N at most only for small perturbations ν of the reference measure µ.

In contrast, our bound always has the correct order in N . Indeed, if

V (N ) = ⊕ N V so that dµ N = e -V (N ) dx on R nN , then H(ν N |µ N ) + µ N (V (N ) ) -ν N (V (N ) ) = N (H(ν|µ) + µ(V ) -ν(V )) ;
hence Theorem 2.1 leads to

δ T al (ν N |µ N ) ≥ N δ n (H(ν|µ) + µ(V ) -ν(V )) ,
which has the correct order in N .

Useful facts on optimal transport

In the proof of Theorem 2.3 and in proofs below we shall need the following notation and facts.

If µ is a probability measure on R n and T : R n → R n a Borel function, we let T #µ be the image measure of µ by T , defined by T #µ(h) = µ(h • T ) for all bounded continuous functions h : R n → R.

Let now µ 0 and µ 1 in P 2 (R n ) be absolutely continuous with respect to Lebesgue measure. Then there exists a convex function ϕ on R n such that µ 1 = ∇ϕ#µ 0 (see [START_REF] Villani | Topics in Optimal transportation[END_REF]Th. 2.12] or [START_REF] Villani | Optimal transport, Old and new[END_REF]Th. 10.41] for instance).

The map ∇ϕ is called the Brenier map. Moreover

|∇ϕ(x) -x| 2 dµ 0 (x) = W 2 2 (µ 0 , µ 1 ).
Now, by the Alexandrov Theorem (see [START_REF] Mccann | A convexity principle for interacting gases[END_REF] or [39, Th. 14.1] for instance), a convex function ψ is almost everywhere twice differentiable: for almost every x ∈ R n there exists a non negative symmetric matrix A such that

ψ(x + h) = ψ(x) + ∇ψ(x) • h + 1 2 Ah • h + o(|h| 2 )
as h tends to 0 in R n . The matrix A is denoted Hess(ψ)(x) and called the Hessian of ψ in the sense of Alexandrov. The trace of A will be denoted ∆ψ(x) : it coincides with the density of the absolutely continuous part of the distributional Laplacian of ψ, the singular part being a non negative measure. In fact, in the above notation and by [START_REF] Mccann | A convexity principle for interacting gases[END_REF]Th. 4.4] or [1, Th. 6.2.12], Hess(ϕ)(x) is a positive matrix for µ 0 -almost every x. Moreover, by [START_REF] Mccann | A convexity principle for interacting gases[END_REF] (see also [1, Lem. 5.5.3]), the Brenier map solves the Monge-Ampère equation

µ 0 (x) = µ 1 (∇ϕ(x)) det(Hess(ϕ)(x)) (28) 
at µ 0 -almost every x in R n . Here µ 0 and µ 1 are the densities of the measures.

Let now ϕ * be the Legendre transform of ϕ. Then µ 0 = ∇ϕ * #µ 1 by [38, Th. 2.12] for instance. Moreover ∇ϕ * (∇ϕ(x)) = x and ∇ϕ(∇ϕ * (y)) = y for µ 0 -almost every x and µ 1 -almost every y. Furthermore, by [34, Th. A.1], if Hess(ϕ)(x) is invertible at x then ϕ * is twice differentiable at ∇ϕ(x), with Hess(ϕ * )(∇ϕ(x)) = Hess(ϕ)(x) -1 . By the remark above, this is the case for µ 0 -almost every x.

Finally, the curve (µ s ) s∈[0,1] defined by µ s = ((1 -s)Id + s∇ϕ)#µ 0 is a geodesic path in P 2 (R n ) between µ 0 and µ 1 , in the sense that

W 2 (µ s , µ t ) = |t -s| W 2 (µ 0 , µ 1 )
for all 0 ≤ s, t ≤ 1. It holds that µ s is also absolutely continuous with respect to Lebesgue measure, see [START_REF] Mccann | A convexity principle for interacting gases[END_REF]Prop. 1.3] or [START_REF] Villani | Topics in Optimal transportation[END_REF]Th. 5.9] for instance.

Proof of Theorem 2.3

Theorem 2.3 is a consequence of the relation

H(hµ|µ) -µ(hV ) = Ent dx (he -V ) (29) 
written with h = f, g and of the following lemma.

Lemma 2.5 Following the same assumptions as in Theorem 2.3, let f, g be two smooth functions such that f µ and gµ belong to P 2 (R n ). Let ϕ be a convex function on R n such that ∇ϕ#(f µ) = gµ. Then

V g dµ -V f dµ -(∇ϕ -x) • ∇f dµ ≥ n exp 1 n Ent dx (f e -V ) -Ent dx (ge -V ) -n + 1 0 (∇ϕ(x) -x) • Hess(V )(x + t(∇ϕ(x) -x))(∇ϕ(x) -x)(1 -t)dt f (x) dµ(x).
Indeed, if Hess(V ) ≥ R Id n , then the last term above is greater than

R 2 |∇ϕ -x| 2 f dµ = R 2 W 2 2 (f µ, gµ). Moreover, on the left-hand side, -(∇ϕ -x) • ∇f dµ ≤ |∇ϕ -x| 2 f dµ 1/2 |∇f | 2 f dµ 1/2 = W 2 (f µ, gµ) I(f µ|µ)
by the Cauchy-Schwarz inequality. This implies Theorem 2.3.

Proof of Lemma 2.5.

By the Taylor formula,

V (∇ϕ(x)) -V (x) = ∇V (x) • (∇ϕ(x) -x) + 1 0 (∇ϕ(x) -x) • Hess(V )(x + t(∇ϕ(x) -x))(∇ϕ(x) -x)(1 -t)dt
for almost every x in R n . We now integrate with respect to f µ and use the comparison between Alexandrov and distributional Laplacians to deduce that

∇V (x)•(∇ϕ(x)-x) f (x) dµ(x) ≥ (∆ϕ-n)f +(∇ϕ-x)•∇f dµ = ∆ϕ f dµ-n+ (∇ϕ-x)•∇f dµ,
as in [START_REF] Cordero-Erausquin | Some applications of mass transport to Gaussian type inequalities[END_REF] or [38, Th. 9.17] for instance. This leads to

V g dµ -V f dµ -(∇ϕ -x) • ∇f dµ ≥ ∆ϕ f dµ -n + 1 0 (∇ϕ(x) -x) • Hess(V )(x + t(∇ϕ(x) -x))(∇ϕ(x) -x)(1 -t)dt f (x) dµ(x). (30) 
Then Lemma 2.5 is a consequence of the following Lemma.

Lemma 2.6 Let µ 0 , µ 1 ∈ P 2 (R n ) absolutely continuous with respect to Lebesgue measure, with respective densities also denoted µ 0 and µ 1 . Let ϕ be a convex function on R n such that ∇ϕ#µ 0 = µ 1 . Then

∆ϕ dµ 0 ≥ n exp Ent dx (µ 0 ) -Ent dx (µ 1 ) n . ( 31 
)
Proof ⊳ Taking logarithms in the Monge-Ampère equation ( 28) and integrating with respect to µ 0 lead to Ent dx (µ 0 ) = Ent dx (µ 1 ) + log det(Hess(ϕ)) dµ 0 .

Now, if for each x the symmetric matrix Hess(ϕ) has eigenvalues ϕ i , then by the Jensen inequality log det(Hess(ϕ))

dµ 0 = n 1 n i log(ϕ i ) dµ 0 ≤ n log 1 n i ϕ i dµ 0 = n log 1 n ∆ϕ dµ 0 .
This concludes the proof. ⊲ Remark 2.7 In the Gaussian case, we have already observed that translations of the Gaussian measure are extremals of the Talagrand inequality. As observed in [START_REF] Cordero-Erausquin | Some applications of mass transport to Gaussian type inequalities[END_REF], or as can be observed from the proof above, there are no other extremals. Indeed the Hessian of the map ϕ has to be constant and equal to the identity matrix for all inequalities to be equalities. In fact, if Hess(V ) ≥ R Id n , then equality in the Talagrand inequality implies that the potential is necessarily Gaussian and that extremals are translations of the Gaussian measure.

Logarithmic Sobolev inequalities by transport

As observed in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF], the HW I inequality (25) classically implies the logarithmic Sobolev inequality (1) by bounding from above the second order polynomial in W 2 in HW I by its maximum. Likewise, the dimensional HW I inequality ( 26) is another path towards dimensional logarithmic Sobolev inequalities.

Here we obtain : Let µ have density e -V where V is C 2 and satisfies Hess(V ) ≥ R Id n with R > 0. Then

H(ν|µ) ≤ ν(V ) -µ(V ) + n log 1 + 1 n I(ν|µ) 2R + µ(V ) -ν(V )
for all ν. Equivalently, in terms of deficit,

δ LSI (ν|µ) ≥ R max δ n ν(V ) -µ(V ) -H(ν|µ) , Λ n I(ν|µ) 2R -ν(V ) + µ(V )) . (33) 
In the Gaussian case, then R = 1 and we obtain a bound which is slightly worse than [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF], where a log(1 + 2u) term is replaced by the larger 2 log(1 + u). At this point, let us observe that still in the Gaussian case a dimensional HW I has been derived in [8, Th. 1.1]. It is also observed by the authors that the HW I inequality in [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF] does not seem to imply (5). We could not compare the HW I in [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF] to our bound [START_REF] Figalli | Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation[END_REF] in full generality. However, if ν(|x| 2 ) = n = γ(|x| 2 ) then they can respectively be written as

2h ≤ x -y + log(1 + x) and h ≤ log(1 + x -y/2) for x = W 2 √ I/n, y = W 2 2
/n and h = H/n; hence our bound is at least significantly more precise in the common range I ≫ W 2 ∼ 1: indeed then x ≫ y ∼ 1 in this range, so that comparing the two right-hand sides amounts to x ≫ log(1 + x).

As remarked in [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF][START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF] it is also possible to get refined logarithmic Sobolev inequalities by combining the HW I and Talagrand inequalities. Here, if Hess(V ) ≥ R Id n with R > 0, then [START_REF] Figalli | Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation[END_REF] can be written as

H + δ n (-h) ≤ W 2 √ I - R 2 W 2 2 ( 34 
)
where

h = H + µ(V ) -ν(V ). Moreover H = R 2 W 2 2 + δ T al , so δ T al + δ n (-h) W 2 ≤ √ I -RW 2 .
Then, by [START_REF] Mccann | A convexity principle for interacting gases[END_REF] again and Theorem 2.1,

δ LSI = 1 2 I -R H ≥ R δ n (-h) + 1 2 √ I -R W 2 2 ≥ Rδ n (-h) + 1 2 (δ T al + δ n (-h)) 2 W 2 2 ≥ Rδ n (-h) + 1 2 (δ n (h) + δ n (-h)) 2 W 2 2 .
In particular this improves upon the first lower bound in [START_REF] Lisini | Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces[END_REF]. Let us recall that the function δ n is defined above, after Theorem 2.1.

Refined Gaussian logarithmic Sobolev inequalities have been considered for certain classes of test measures ν : measures ν satisfying lower and upper curvature bounds as in [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF] and [START_REF] Indrei | A quantitative log-Sobolev inequality for a two parameter family of functions[END_REF], measures ν satisfying a (weaker) Poincaré inequality as in [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF]. Under these additional assumptions on ν, the goal is then to obtain better constants in the logarithmic Sobolev inequality, mimicking in a sense the phenomenon observed in the Poincaré inequality when considering test functions orthogonal to the first eigenfunctions. In Indrei-Marcon [START_REF] Indrei | A quantitative log-Sobolev inequality for a two parameter family of functions[END_REF], the deficit is controlled by the Wasserstein distance for the class of centered functions with upper and lower bounded curvature. The authors in [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF] also give new bounds in terms of conditionally centered vectors. Further improvements are given in [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF] in terms of the W 1,1 distance defined in Section 2.2. Here again our bounds share the advantages of holding without any smoothness, centering, etc. hypothesis on ν, and of having the good dimensional behaviour when considering product measures.

Applications to Fokker-Planck equations

Let us now see how our results (or methods) lead to short-time smoothing of the entropy and improved contraction rates for the laws of solutions to stochastic differential equations. For this, let again V be a C 2 function on R n such that e -V = 1 and Hess(V ) ≥ R Id n , with R possibly negative, and satisfying the doubling condition V (x + y) ≤ C(1 + V (x) + V (y)) for a C and all x, y. Let also µ be the probability measure with density e -V . We let u 0 in P 2 (R n ) and consider gradient flow solutions u = (u t ) t≥0 ∈ C([0, +∞), P 2 (R n )) of the Fokker-Planck equation

∂u t ∂t = ∆u t + ∇ • (u t ∇V ), t > 0, x ∈ R n (35) 
as in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Chap. 11.2.1] and [START_REF] Daneri | Lecture notes on gradient flows and optimal transport[END_REF]Th. 4.20 and 4.21] (see also [START_REF] Lisini | Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces[END_REF]). Equation ( 35) holds in the sense of distributions. Moreover, by [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Th. 11.2.8] or again [START_REF] Daneri | Lecture notes on gradient flows and optimal transport[END_REF], for any t > 0 the solution u t has a density; for almost every t > 0 this density is in

W 1,1 loc (R n ), with ∇u t /u t + ∇V ∈ L 2 (u t ); finally t → I(u t |µ) ∈ L 1 loc (]0, +∞[) and d dt H(u t |µ) = -I(u t |µ)
for almost every t > 0. The solution u t can be seen as the law at time t of the solution (X t ) t≥0 to the stochastic differential equation

dX t = √ 2 dB t -∇V (X t ) dt.
Here (B t ) t≥0 is a standard Brownian motion on R n and the initial datum X 0 has law u 0 . Moreover, the interpretation of [START_REF] Nguyen | Dimensional variance estimates of Brascamp-Lieb type and a local approach to dimensional Prékopa theorem[END_REF] as the gradient flow of H(•|µ) on the space P 2 (R n ) has enabled to obtain the following short-time and contraction properties (see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Th. 11.2.1] and [START_REF] Villani | Optimal transport, Old and new[END_REF]Chap. 24]). Let u and v be solutions to [START_REF] Nguyen | Dimensional variance estimates of Brascamp-Lieb type and a local approach to dimensional Prékopa theorem[END_REF]. Then

H(u t |µ) ≤ W 2 2 (u 0 , µ) 2t e 2 max{-R,0} t , t > 0 (36) and W 2 (u t , v t ) ≤ e -Rt W 2 (u 0 , v 0 ), t ≥ 0. ( 37 
)
In particular, if R > 0, then u t converges to the steady state µ as

W 2 (u t , µ) ≤ e -Rt W 2 (u 0 , µ), t ≥ 0. ( 38 
)
The purpose of this section is to improve these three properties by means of the tools and inequalities in the above sections.

Short-time smoothing of the entropy

In the Gaussian case where µ is the standard Gaussian measure γ, the solution to [START_REF] Nguyen | Dimensional variance estimates of Brascamp-Lieb type and a local approach to dimensional Prékopa theorem[END_REF] is given by the Mehler formula (see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Sect. 2.7.1]). In particular the fundamental solution, with initial datum u 0 the Dirac mass at 0, is at time t > 0 the Gaussian measure with variance σ 2 t = 1 -e -2t :

u t (x) = (2πσ 2 t ) -n/2 e -x 2 /(2σ 2 t ) , z ∈ R n .
Its relative entropy can be computed as

H(u t |γ) = R n u t (x) log u t (x) γ(x) dx = - n 2 e -2t + log(1 -e -2t ) .
Of course this is coherent with [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF], with R = 1, since

- n 2 e -2t + log(1 -e -2t ) ≤ n 2t = W 2 2 (u 0 , µ) 2t
by direct computation. In fact, for t ∼ 0 one can observe that

H(u t |γ) ∼ n 2 log 1 t •
On the other hand, let u be a solution to [START_REF] Nguyen | Dimensional variance estimates of Brascamp-Lieb type and a local approach to dimensional Prékopa theorem[END_REF], still in the Gaussian case, and with initial datum u 0 such that u 0 (|x| 2 ) = n = γ(|x| 2 ). Then u t (|x| 2 ) = n for all t since

d dt |x| 2 du t = 2n -2 |x| 2 du t . (39) 
In particular, in the notation H(t) = H(u t |γ)/n and I(t) = I(u t |γ)/n, the dimensional Gaussian logarithmic Sobolev inequality (5) simplifies as 2H ≤ log(1 + I). Hence

H ′ (t) = -I(t) ≤ 1 -e 2H(t) , for a.e. t > 0.
By the change of variable x(t) = e -2h(t) this integrates into

x(t)e 2t ≥ x(0) + e 2t -1 ≥ e 2t -1.
In other words

H(u t |γ) ≤ - n 2 log(1 -e -2t ), t > 0
which gives the same short-time behaviour.

More generally :

Proposition 3.1 Let u be a solution to [START_REF] Nguyen | Dimensional variance estimates of Brascamp-Lieb type and a local approach to dimensional Prékopa theorem[END_REF] with Hess(V ) ≥ R Id n , R > 0, and with initial condition u 0 in P 2 (R n ). Let T > 0 and assume that u t (|∇V | 2 ) ≤ M for t in [0, T ]. Then there exists a constant c > 0 depending only on n, R and M such that

H(u t |µ) ≤ max 1, n 2 log c t , t ≤ T. Remark 3.2 The moment assumption u t (|∇V | 2 ) ≤ M for t in [0, T ],
is not a restrictive condition. It can indeed be checked by time differentiating u t (|∇V | 2 ) and controlling its non explosion via a Lyapunov type condition on u 0 e V or on derivatives of V for instance. It can also be checked by observing that the Markov semigroup (P t ) t≥0 with generator L = ∆ -∇V • ∇ is such that φdu t = P t φdu 0 for any test function φ. In particular, if Φ is a convex function and if the initial datum has a density also denoted u 0 , then

u t (|∇V | 2 ) = |∇V | 2 du t = P t (|∇V | 2 )du 0 = P t (|∇V | 2 )u 0 e V dµ ≤ Φ(P t (|∇V | 2 ))dµ + Φ * (u 0 e V )dµ ≤ Φ(|∇V | 2 )dµ + Φ * (u 0 e V )dµ.
Here we use the fact that t → Φ(P t (|∇V | 2 ))dµ is non increasing since Φ is convex. The moment assumption is then satisfied for all T > 0 as soon as the right hand side is finite for a convex function Φ.

Proof ⊳ We shall let c denote diverse positive constants depending only on n, M and R. By Corollary 1.4 applied to the measure f 2 µ = u t , and integration by parts, there holds

H(u t |µ) ≤ n(s -1 -log s) + 1 -s 2 2R u t (|∇V | 2 ) + s(s -1) R u t (∆V ) + s 2 2R I(u t |µ)
for t > 0 and s > 0. Recall that I has been introduced in (2). Since V is convex, then ∆V ≥ 0 and then

H(u t |µ) ≤ -n log s + c + s 2 2R I(u t |µ)
for all s ∈]0, 1] and t ∈]0, T ]. Now, as far as H(t) := H(u t |µ) ≥ 1, then I(t) := I(u t |µ) ≥ 2R so that s = 2R/I is smaller than 1. For this s we obtain

H ≤ c + n 2 log I. Hence H ′ (t) = -I(t) ≤ -e 2H(t)/n-c
for almost every t > 0. As above x(t) = e -2H/n satisfies x(t) ≥ x(0) + ct ≥ ct by time integration. Written in terms of H, this concludes the proof. ⊲

Refined contraction properties

Let us now see how to make [START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF] 

∂u t ∂t + ∇ • (ξ[u t ]u t ) = 0, t > 0, x ∈ R n with ξ[u t ] = -∇V -∇ log u t . Then for almost every t > 0 - 1 2 d dt W 2 2 (u t , v t ) = ξ[v t ](∇ϕ t (x)) -ξ[u t ](x) • (∇ϕ t (x) -x) u t (x) dx (40) 
≥ ∆ϕ t (x)+∆ϕ * t (∇ϕ t (x))-2n + ∇V (∇ϕ t (x))-∇V (x) •(∇ϕ t (x)-x) u t (x) dx (41) 
for two solutions u and v. Here ϕ t is the convex map such that v t = ∇ϕ t #u t and u t = ∇ϕ * t #v t for the Legendre transform ϕ * t of ϕ t (see Section 2.3). Equality (40) follows from [39, Th. 23.9] (see also [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Th. 8.4.7]); its assumptions are satisfied since (and likewise for v)

t2 t1 R n |ξ[u s ]| 2 du s ds = t2 t1 I(u s |µ)ds = H(u t1 |µ) -H(u t2 |µ) ≤ H(u t1 |µ)
which is finite for any t 2 > t 1 > 0, as observed above. Inequality (41) follows from a weak integration by parts, as in [33, Th. 1.5]; there again ∆ϕ t is the trace of the Alexandrov Hessian of ϕ t . Now, for given t > 0 and u t -almost every x, the symmetric matrix Hess(ϕ t )(x) is positive, as recalled in Section 2.3 : letting e 2λi(x) for i = 1, . . . , n its n positive eigenvalues , then its inverse matrix Hess(ϕ * t )(∇ϕ t (x)) (see again Section 2.3) has eigenvalues e -2λi(x) ; hence at point x

∆ϕ t + ∆ϕ * t (∇ϕ t ) -2n = tr Hess(ϕ t ) + tr Hess(ϕ * t )(∇ϕ t ) -2n = i e 2λi + e -2λi -2) = 4 i sinh 2 (λ i ).
(42) Hence, by convexity of sinh 2 and the Jensen inequality, and (32),

∆ϕ t (x) + ∆ϕ * t (∇ϕ t (x)) -2 n u t (x) dx = 4n 1 n i sinh 2 (λ i (x)) u t (x) dx ≥ 4n sinh 2 1 n i λ i (x) u t (x) dx = 4n sinh 2 1 2n log det Hess(ϕ t )(x) u t (x) dx = 4n sinh 2 Ent dx (v t ) -Ent dx (u t ) 2n . Since Hess(V ) ≥ R Id n , we obtain - 1 2 d dt W 2 2 (u t , v t ) ≥ 4n sinh 2 Ent dx (v t ) -Ent dx (u t ) 2n + RW 2 2 (u t , v t ). (43) 
By time integration this ensures the following dimensional contraction property : Proposition 3.3 In the above notation, if Hess(V ) ≥ R Id n for R ∈ R, then for any solutions to (35)

W 2 2 (u t , v t ) ≤ e -2Rt W 2 2 (u 0 , v 0 ) -8n t 0 e -2R(t-s) sinh 2 Ent dx (v s ) -Ent dx (u s ) 2n ds, t ≥ 0. ( 44 
)
For the heat equation, namely for V = 0, then the associated Markov generator L = ∆ satisfies the CD(0, n) curvature-dimension condition: in particular in this case the bound (44) has been derived in [START_REF] Bolley | Dimensional contraction via Markov transportation distance[END_REF] and [START_REF] Bolley | Equivalence between dimensional contractions in Wasserstein distance and curvature-dimension condition[END_REF], and is also a consequence of [START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[END_REF]. For V = 0, then the associated generator L = ∆ -∇V • ∇ satisfies a CD(R, ∞) but no CD(R, n) condition: in particular the bound (44) can not be obtained from the works mentioned above.

Remark 3.4

The above computation can be extended to drifts A(x) which are not gradients. In this case the assumption Hess(V ) ≥ R Id n should be replaced by the monotonicity condition (A(y)-A(x))•(y -x) ≥ R |y -x| 2 for all x, y (see [START_REF] Bolley | Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations[END_REF] for this non-gradient case).

A formal gradient flow argument to Proposition 3.3

In this subsection, we provide an alternative formal argument to Proposition 3.3 based on gradient flow.

We begin with the following elementary lemma which gives additional information to [21, Lem. 2.2].

Lemma 3.5 Let ψ be a C 2 function on [0, 1]. Then the following properties are equivalent:

• ψ ′′ ≥ ψ ′2 /n; • for all r, s in [0, 1], n -ψ ′ (r)(s -r) ≥ n e ψ(r)-ψ(s) n ; (45) 
• for all r, s in [0, 1],

ψ ′ (s) -ψ ′ (r) (s -r) ≥ 4n sinh 2 ψ(s) -ψ(r) 2n . ( 46 
)
Proof ⊳ Let indeed U = e -ψ/n , so that

U ′′ = -ψ ′′ - ψ ′2 n U n .
Then ψ ′′ ≥ ψ ′2 /n if and only if U is concave, hence if and only

e -ψ(s) n = U (s) ≤ U (r) + U ′ (r)(s -r) = e -ψ(r) n - ψ ′ (r) n e -ψ(r) n (s -r)
for all r, s ∈ [0, 1], which is (45) when multiplying both sides by e ψ(r)/n . Adding (45) with the corresponding bound obtained with r, s instead of s, r leads to (46). Conversely, dividing (46) by (s -r) 2 and letting s go to r gives ψ ′′ ≥ ψ ′2 /n at point r. ⊲ Let now µ 0 and µ 1 be absolutely continuous measures in P 2 (R n ), ∇ϕ their Brenier map and (µ s ) s∈ [0,[START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] the geodesic between them, as in Section 2.3. Here again we identify the measures with their densities.

Let us now recall why the function ψ : s → Ent dx (µ s ) formally satisfies ψ ′′ ≥ ψ ′2 /n on [0,1]. For this, recall from Section 2.3 that for µ 0 -almost every x the Alexandrov Hessian Hess(ϕ)(x) is positive, so that the eigenvalues θ i (x) of Hess(ϕ)(x) -I are > -1. Writing [START_REF] Indrei | A quantitative log-Sobolev inequality for a two parameter family of functions[END_REF] with the measures µ 0 = µ 0 and µ 1 = µ s , we obtain ψ(0) = ψ(s) + log det(I + s(Hess(ϕ)(x) -I)) dµ 0 (x) = ψ(s)

+ i log(1 + sθ i (x)) dµ 0 (x).
Hence

ψ ′ (s) = - i θ i 1 + sθ i dµ 0 (47)
and then by the Cauchy-Schwarz inequality

ψ ′′ (s) = n 1 n i θ 2 i (1 + sθ i ) 2 dµ 0 ≥ n 1 n i θ i 1 + sθ i dµ 0 2 = 1 n ψ ′ (s) 2 .
Remark 3.6 Identity (47) can also be formally checked using the continuity equation solved by (µ s ) s∈[0,1] :

∂µ s ∂s + ∇ • (µ s v s ) = 0.
Here the vector field v s satisfies v s (x + s(∇ϕ(x) -x)) = ∇ϕ(x) -x, see e. g. [START_REF] Villani | Topics in Optimal transportation[END_REF]Th. 5.51]. For, and recalling that ψ(s) = µ s log µ s dx

ψ ′ (s) = -∇ • (v s µ s ) log µ s dx = -∇ • v s µ s dx = - ∇ • v s (x + s(∇ϕ(x) -x)) dµ 0 (x)
by integration by parts and since (x + s(∇ϕ(x) -x))#µ 0 = µ s . Identity (47) follows since by chain rule

∇ • v s (x + s(∇ϕ(x) -x)) = tr (Hess(ϕ)(x) -I) I + s(Hess(ϕ)(x) -I) -1 = i θ i 1 + sθ i • Remark 3.7
In the above notation, observe that (45) in Lemma 3.5 for ψ(s) = Ent dx (µ s ), r = 0 and s = 1 formally leads to (31) in Lemma 2.6. For, in the notation of Remark 3.6 and by integration by parts,

ψ ′ (0) = ∇µ 0 • v 0 dx = ∇µ 0 • (∇ϕ -x)dx = n -∆ϕ dµ 0 .
We can now deduce an alternative formal argument to the bound in Proposition 3.3. We begin with the following classical observation in Euclidean space : Let X and Y be two solutions of the Euclidean gradient flow

X ′ t = -∇U (X t ) in R d , where U : R d → R is a smooth potential. For t > 0 let U t (s) = U (X t + s(Y t -X t )) for s ∈ [0, 1]. Then - 1 2 d dt |Y t -X t | 2 = (Y t -X t ) • (∇U (Y t ) -∇U (X t )) = U ′ t (1) -U ′ t (0). ( 48 
)
Let now u and v two solutions to the Fokker-Planck equation [START_REF] Nguyen | Dimensional variance estimates of Brascamp-Lieb type and a local approach to dimensional Prékopa theorem[END_REF], which by [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Chap. 11.2] and [START_REF] Villani | Optimal transport, Old and new[END_REF]Chap. 23] is the gradient flow of H(•|µ) on the space P 2 (R n ). For any t > 0, let ∇ϕ t be the optimal transport map between u t and v t , and (µ s t ) s∈[0,1] be the geodesic path in P 2 (R n ) between u t and v t , as in Section 2.3. Then, formally and by analogy with (48),

- 1 2 
d dt W 2 2 (u t , v t ) = E ′ t (1) -E ′ t (0) (49) 
where for given t > 0 we let

E t (s) = H(µ s t |µ) = Ent dx (µ s t ) + V dµ s t .
Indeed, let ψ : s → Ent dx (µ s t ) for given t and, for each x let the matrix Hess(ϕ t )(x) have eigenvalues e 2λi . Then, in the above notation θ i = e 2λi -1, (47) for µ = u t gives for s = 0, 1 we formally recover (41) in (49). We now use the fact that for given t the function ψ satisfies ψ ′′ ≥ ψ ′2 /n on [0, 1]. Then, by (46) in Lemma 3.5 for r = 0 and s = 1 we obtain

ψ ′ (1) -ψ ′ (0) = i θ i - θ i 1 + θ i du t = i θ 2 i 1 + θ i du t = i e 2λi + e -2λi
E ′ t (1) -E ′ t (0) ≥ 4n sinh 2 Ent dx (v t ) -Ent dx (u t ) 2n + ∇V (∇ϕ t (x)) -∇V (x) • ∇ϕ t (x) -x du t (x).
Since |∇ϕ t (x) -x| 2 du t (x) = W 2 2 (u t , v t ) this leads to (43) and then to (44) as soon as Hess(V ) ≥ R Id n .

Improved convergence rates

In this section we consider a solution u to [START_REF] Nguyen | Dimensional variance estimates of Brascamp-Lieb type and a local approach to dimensional Prékopa theorem[END_REF] in the Gaussian case where µ = γ, and for which we can take R = 1 above. Let us see how the contraction property (44) can make the convergence estimate (37) more precise.

For simplicity we assume that u 0 (|x| 2 ) ≤ n = γ(|x| 2 ). Then u t (|x| 2 ) ≤ n for all t, by [START_REF] Villani | Optimal transport, Old and new[END_REF]. Hence ( 29) and the Talagrand inequality ( 22) ensure that 0 ≤ W 2 2 (u t , γ) < 2n and

Ent dx (u t ) -Ent dx (γ) n ≥ -log 1 - W 2 2 (u t , γ) 2n .
In particular the right-hand side is non negative. Moreover, for the stationary solution v t = v 0 = γ, the contraction property (44) with R = 1, in the form (43), implies

-x ′ ≥ x 2 1 -x + 2 x
where x(t) = W 2 2 (u t , γ)/(2n) ∈ [0, 1). Here we use that sinh(log x) = (x -1/x)/2. In other words z(t) = 1 -(1 -x(t)) 2 satisfies z ′ ≤ -2z. This integrates into z(t) ≤ e -2t z(0), that is,

x(t) ≤ 1 -1 -(2x(0) -x(0) 2 )e -2t 1 2 . ( 50 
)
By the lower bound

1 -(2x(0) -x(0) 2 )e -2t ≥ (1 -x(0)e -2t ) 2 (51) 
it implies the classical bound [START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF]. It also improves it: for instance (50) can be written as

W 2 2 (u t , γ) ≤ W 2 2 (u 0 , γ)e -2t 2 -x(0) 1 + 1 -(2x(0) -x(0) 2 )e -2t 1 2 
.

Then by (51) we obtain Corollary 3.8 In the above notation, let u be a solution to [START_REF] Nguyen | Dimensional variance estimates of Brascamp-Lieb type and a local approach to dimensional Prékopa theorem[END_REF] in the Gaussian case, with initial datum u 0 such that u 0 (|x| 2 ) ≤ n. Then for all t ≥ 0

W 2 2 (u t , γ) ≤ W 2 2 (u 0 , γ)e -2t 1 -W 2 2 (u 0 , γ)/(4n) 1 -W 2 2 (u 0 , γ)e -2t /(4n)
.

Observe that the quotient is smaller than 1.

Remark 3.9 The Gaussian assumption is used here only to ensure uniform convexity of the potential (hence the Talagrand inequality), and that V du t ≤ V e -V dx as soon as this holds at t = 0.

Comparison of Brascamp-Lieb inequalities

Many dimensional Brascamp-Lieb inequalities have recently been proved, and should be compared. We have already compared our inequality (52) with G. Hargé's bound, as the same covariance term appears.

Let us now compare (57) with other inequalities. It seems difficult to obtain a global comparison and we are only able to give partial answers or hints.

• The present paper proposes the two inequalities (52) and (57). In the Gaussian case we have already observed that (57)-( 58) is stronger than (52). A variant of this argument shows that it is also the case for instance when V (x) = x 2a + β, x ∈ R with a ∈ N * and a normalisation constant β. We believe that it is the case for any V since the additional term in (52) vanishes for functions f for which the one in (57) does not.

In fact, for a C 1 function f such f e -V = 0, the additional term in (57) vanishes if and only if there exists a ∈ R n such that f = a • ∇V (and then a = f (x)xe -V (x) ). For, if f = ∇f Hess(V ) -1 ∇V on R n , then g(y) = f (∇V * (y)) solves g(y) = ∇g(y) • y on R n . Hence for fixed y ∈ R n the map t → g(ty)/t is constant; for t = 1 and t → 0 this implies g(y) = ∇g(0) • y. This finally gives f , and conversely. But it is classical that these functions f are exactly those for which equality holds in the Brascamp-Lieb inequality (4). Hence the additional term in (57) can be seen as a (weighted) way of measuring the distance of a function to the optimisers in the Brascamp-Lieb inequality (4). Very recently, and under the same hypothesis as in Theorem 4.3, D. Cordero-Erausquin in [START_REF] Cordero-Erausquin | Transport inequalities for log-concave measures, quantitative forms and applications[END_REF]Prop. 6] proved that

V ar µ (f ) ≤ ∇f • Hess(V ) -1 ∇f dµ -cλ(µ) Hess(V ) -1 (Hess(V ) + cλ(µ)Id n ) -1 ∇f 0 • ∇f 0 dµ (59)
for all f satisfying f dµ = 0; here f 0 = f -yf (y)dµ(y) • ∇V , c is a numerical constant and λ(µ) is the Poincaré constant of the measure µ. The additional term in (59) vanishes if and only if f 0 is a constant, so also appears here as a distance to the optimisers. A quantitative comparison between (57) and (59) can not easily be performed as in particular a numerical constant appears in (59). After the present work was completed, M. Arnaudon, M. Bonnefont and A. Joulin [START_REF] Arnaudon | Intertwinings and generalized Brascamp-Lieb Inequalities[END_REF] have derived Brascamp-Lieb inequalities in which the energy has been modified, instead of keeping the original energy and allowing for a remainder term, as here. We could not compare their results with ours.

• We now turn to the Gaussian case when µ = γ. We have already observed that (57) is stronger that (52), which is exactly [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]. On the other hand, ( 8) is a purely spectral inequality. We have numerically checked that (57) implies (8) for the Hermite polynomial functions

H k , k ∈ {1, • • • , 7}.
We believe that it is the case for all functions, but we do not have a proof of it. Let us conclude by mentioning the inequality

V ar γ (f ) ≤ 6 |∇f | 2 dγ -6 (∇f • x) 2 n + |x| 2 dγ.
has been proved in [START_REF] Bobkov | Weighted Poincaré-type inequalities for Cauchy and other convex measures[END_REF]Sect. 2]. Their extremal functions have been lost since there is no equality when f (x) = a • x and the constant in front of the energy is larger than in our bounds.

A Proof of Theorem 1.1

Optimality of inequality [START_REF] Carlen | Superadditivity of Fisher's information and logarithmic Sobolev inequalities[END_REF]. When W is strictly convex and satisfies (H1), then [START_REF] Bolley | Equivalence between dimensional contractions in Wasserstein distance and curvature-dimension condition[END_REF] holds, so that

W * (∇W ) W n+1 dx = ∇W • x -W W n+1 dx = - 1 n ∇(W -n ) • x dx -1 = 0.
In the last equality, we used an integration by parts, valid from hypothesis (H1) satisfied by W . This gives the equality case in (15) when g = W.

Proof of inequality [START_REF] Carlen | Superadditivity of Fisher's information and logarithmic Sobolev inequalities[END_REF]. Globally, the proof follows [START_REF] Bobkov | From Brunn-Minkowski to sharp Sobolev inequalities[END_REF], but for completeness we give its main points.

It is based on a Taylor expansion of the inequality H t dx ≥ 1, when t = 1 -s goes to 1, and where H t (67) In particular, ∇V (z + h δ ) • h δ ≤ 0 on the left-hand side for δ small enough, independently of z since the o(δ 2 ) comes from Z δ , see (65), and is uniform in z; hence for any t ∈ [-1, 1] V (z + th δ ) -V (z + h δ ) ≥ (t -1)∇V (z + h δ ) • h δ ≥ 0 by convexity of V . Moreover ∇V (z + th δ ) • h δ ≤ ∇V (z + h δ ) • h δ again by convexity, whence

|∇V (z + th δ ) • h δ | ≥ |∇V (z + h δ ) • h δ |.
Collecting all terms, (67) leads to

2δ 2 f 2 dµ + o(δ 2 ) |∇V (z + h δ ) • h δ | ≥ 2ρ|h δ | 2 + 2 n |∇V (z + h δ ) • h δ | 2 ≥ 4 ρ n |h δ | |∇V (z + h δ ) • h δ |.
for δ small enough, and where the o(δ 2 ) is uniform in z. Hence there exists a constant A > 0 such that

|h δ | ≤ A δ 2 ,
for any δ small enough and any z, whenever |z + h δ | ≥ R.

• Assume now that |z + h δ | ≤ R. Let us write equation (64) as

∇Φ(z + h δ ) -∇Φ(z -h δ ) = 1 -Z 1/n δ exp - 2δ n f (z + h δ ) ∇Φ(z + h δ ) + 2δZ 1/n δ exp - 2δ n f (z + h δ ) + 1 n V (z + h δ ) ∇f (z + h δ ).
Then f , V and their gradients are continuous and then uniformly bounded on the ball {|x| ≤ R}, so by (65) there exists a constant A such that for all δ small enough and all z with |z + h δ | ≤ R ∇Φ(z + h δ ) -∇Φ(z -h δ ) ≤ A δ.

Hence, by the Cauchy-Schwarz inequality and the bound Hess(Φ) ≥ ρ n e V Id n , a consequence of (66),

Aδ|h δ | ≥ ∇Φ(z + h δ ) -∇Φ(z -h δ ) • h δ = 1 -1 h δ • Hess(Φ)(z + th δ )h δ dt ≥ 2ρ n e min V |h δ | 2 .
By uniform convexity the function V is indeed bounded from below on R n , so there exists a constant B such that for all δ small enough and all z with |z + h δ | ≤ R

|h δ | ≤ B δ.
All cases being covered, our first step is completed. C Link with G. Hargé's bound (53)

In this Appendix, we observe that G. Hargé's bound (53) can be formally recovered by linearization in the Monge-Ampère equation [START_REF] Gentil | From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality[END_REF]. Let indeed f be a smooth function such that f dµ = 0, and µ 2 = (1+ε f )µ for ε > 0, and expand the transport map ∇ϕ(x) sending µ 1 = µ onto µ 2 as x+ε∇θ 1 (x)+ε 2 ∇θ 2 (x)+o(ε 2 ). Taking logarithms in [START_REF] Gentil | From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality[END_REF] with such µ 1 and µ 2 and observing that log det(Hess(ϕ)) = log det I +εHess(θ 1 )+ε 2 Hess(θ 2 )+o(ε 2 ) = ε∆θ 1 +ε 2 ∆θ 2 -ε 2 2 tr (Hess(θ 1 )) 2 +o(ε 2 ), a second-order Taylor expansion ensures that f = -Lθ 1 in the first-order terms; moreover

f 2 = -∇θ 1 • Hess(V )∇θ 1 + 2Lθ 2 + 2∇f • ∇θ 1 -tr (Hess(θ 1 )) 2
in the second-order terms. Assume now that Hess(V ) > 0, and let M = Hess(V ) 1/2 > 0. Then

-∇θ 1 • Hess(V )∇θ 1 + 2∇f • ∇θ 1 = |M -1 ∇f | 2 -|M ∇θ 1 -M -1 ∇f | 2
so that f 2 dµ = ∇f • Hess(V ) -1 ∇f dµ -|M ∇θ 1 -M -1 ∇f | 2 + tr (Hess(θ 1 )) 2 dµ (71) by integration. At this point one recognizes terms in the proof of [START_REF] Hargé | Reinforcement of an inequality due to Brascamp and Lieb[END_REF]Th. 1] : one observes that f = -Lθ 1 so ∇f = M 2 θ 1 -X by differentiation, where X ∈ R n is the vector with coordinates L(∂ i θ 1 ); hence

|M ∇θ 1 -M -1 ∇f | 2 = |M -1 X| 2 ≥ 1 S |X| 2
if moreover Hess(V ) ≤ S. In particular 

|M
= i ∂ ii θ 1 dµ 2 ≤ n i ∂ ii θ 1 dµ 2 ≤ n i,j ∂ ij θ 1 dµ 2 .
By (71) and (72) we finally recover (53) since by integration by parts and (55)

∆θ 1 dµ = ∇θ 1 • ∇V e -V dx = -Lθ 1 V e -V dx = f V dµ.

Hence -2δ 2 f 2 1 - 1 ρ|h δ | 2 + 1 n

 2111 dµ + o(δ 2 ) ∇V (z + h δ ) • h δ ≥ e -V (z+h δ ) |∇V (z + th δ ) • h δ | 2 e V (z+th δ ) dt.

2 .

 2 In a second step we perform a first-order Taylor expansion of the equality (64). For z fixed, it gives-δ∇f (z) + Hess(V )(z)h δ -δ n f (z)∇V (z) + h δ • ∇V (z) n ∇V (z) + o z (δ) = 0, (68)where o z (δ) depends on z, δ and h δ . Since |h δ | ≤ C δ by the first step, uniformly in z, one deduces from (68) that|o z (δ)| ≤ A δ 2 (|Hess(V )(z)| + |∇V (z)| 2 + 1)for a constant A and for any z.

  1.1 A general convexity inequality via the Borell-Brascamp-Lieb inequalityLet us first state a general consequence of the Borell-Brascamp-Lieb inequality. It will lead to various dimensional logarithmic Sobolev inequalities. In the sequel we let ψ * be the Legendre transform of a function ψ on R n , defined for y ∈ R n by

	ψ * (y) = sup x∈R n	{y • x -ψ(x)} ∈ (-∞, +∞].
	If ψ is C 1 and strictly convex satisfying		
	lim |x|→+∞	ψ(x) |x|	= +∞,
	then (see [38, Sect. 2.1.3 and 2.4.3] for instance) for all x ∈ R n , ψ * (x) ∈ R and

  the bound in Corollary 2.4 implies the classical Gaussian concentrationµ(A r ) ≤ e -R 2 (r-cA)2 , r > c A of the Talagrand inequality (3), see again [39, Chap. 22] for instance. The bound in Corollary 2.4 captures the behaviour of concentration of the measure µ in a more accurate way: let for instance V (x) = |x| 2 /2 + |x| p + Z p with p > 2 and a normalizing factor Z p , and A be the Euclidean unit ball in R n . Then Hess(V ) ≥ Id n , so by Corollary 2.4 with R = 1 there exists a constant

  finer. Still by [1, Th. 8. 3. 1] and [18, Th. 4.20 and 4.21], one can write (35) as the continuity equation

  -2 du t = ∆ϕ t + ∆ϕ * t (∇ϕ t ) -2 n du t + s(∇ϕ t (x) -x) du t (x) = ∇V x + s(∇ϕ t (x) -x) • (∇ϕ t (x) -x) du t (x)

	as in (42). Using moreover the formal derivative
	d ds	V dµ s t =	d ds	V x

  ∇θ 1 -M -1 ∇f | 2 dµ ≥ 1 S i L(∂ i θ 1 ) Id n . Hence |M ∇θ 1 -M -1 ∇h| 2 +tr (Hess(θ 1 )) 2 dµ ≥ 1 +

		2	dµ ≥	R S i,j		∂ 2 ji θ 1	2 dµ
	by (55), if Hess(V ) ≥ R R S i,j	∂ 2 ji θ 1	2 dµ ≥	1 n	1 +	R S	∆θ 1 dµ	2	(72)
	since moreover by the Cauchy-Schwarz inequality								
	2								
	∆θ 1 dµ								
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Brascamp-Lieb inequalities

It is classical that linearizing a logarithmic Sobolev inequality leads to a Poincaré inequality, which in the Gaussian case is the Brascamp-Lieb inequality. In this section we shall see how to obtain two different dimensional Brascamp-Lieb inequalities: a first one by an improvement of the classical L 2 method, and a second one by linearization in the Borell-Brascamp-Lieb inequality [START_REF] Bolley | Dimensional contraction via Markov transportation distance[END_REF].

4.1 Brascamp-Lieb inequality by L 2 method Proposition 4.1 (Dimensional Brascamp-Lieb inequality I) Let µ be a probability measure on R n with density e -V where V is a C 2 function satisfying Hess(V ) > 0. Then

for all C 1 compactly supported functions f . Remark 4.2 V. H. Nguyen [START_REF] Nguyen | Dimensional variance estimates of Brascamp-Lieb type and a local approach to dimensional Prékopa theorem[END_REF] has proven that Var µ (V ) ≤ n for V convex. We will observe in the proof that even V ar µ (V ) < n as soon as Hess(V ) > 0. In fact, it follows from the bound (52) for f = V that V ar µ (V ) ≤ nI n+I < n where I = ∇V • Hess(V ) -1 ∇V dµ. In particular, if R Id n ≤ Hess(V ) ≤ S Id n , then

The latter inequality is an equality (to n/2) for the Gaussian measure with any variance, for which R = S.

If µ = γ is the standard Gaussian measure then (52) is exactly the dimensional (Poincaré) inequality [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] (and in particular equality holds for f = |x| 2 /2).

In the non Gaussian case, G. Hargé has derived the following improvement of the Brascamp-Lieb inequality, see [START_REF] Hargé | Reinforcement of an inequality due to Brascamp and Lieb[END_REF]Th. 1] 

for all f . We do not know in full generality which of the coefficients (n -V ar µ (V )) -1 and n -1 (1 + R/S) in the corrective terms of (52) and ( 53) is the larger. Besides being equal (to 2n -1 ) in the Gaussian case, both coefficients are always larger than n -1 . More precisely the coefficient in (52) is always strictly larger than n -1 whereas the coefficient in (53) is n -1 when R = 0 (no uniform convexity) or S = +∞ (no upper bound on Hess(V )): hence at least in these cases our bound is stronger. The bound (53) has been obtained in [START_REF] Hargé | Reinforcement of an inequality due to Brascamp and Lieb[END_REF] by a L 2 argument. We shall see in the appendix that it can be formally recovered by linearization in the Monge-Ampère equation. Let now f be a C 1 compactly supported function. Then pointwise

From these remarks, inequality (54) implies

Let now h = -Lω. Then ∇f ∇ω dµ = -f Lω dµ = f h dµ by integration by parts.

To sum up, we have obtained

for any h in L(C ∞ c ) and any C 1 compactly supported function f . But, by [START_REF] Hargé | Reinforcement of an inequality due to Brascamp and Lieb[END_REF]Lem. 9] for instance, L(C ∞ c ) is dense (for the L 2 (µ) norm) in the space of functions h ∈ L 2 (µ) such that hdµ = 0. Hence, formula (56) extends to any h ∈ L 2 (µ) such that h dµ = 0. In particular, given a C 1 compactly supported function f such that f dµ = 0, we can apply (56

I was non positive, then the left-hand side would be -∞ by letting a tend to ±∞, which is impossible.

We finally optimise over a, choosing a = V f dµ/(n -V ar µ (V )). This concludes the proof of Proposition 4.1 for any f such that f dµ = 0, and then for any f . ⊲

Brascamp-Lieb inequality via the Borell-Brascamp-Lieb inequality

The following result gives an improved version of the Brascamp-Lieb inequality (4) from the Borell-Brascamp-Lieb inequality.

Theorem 4.3 (Dimensional Brascamp-Lieb inequality II) Let µ be a probability measure on R n with density e -V where V is a C 2 function satisfying Hess(V ) > 0. Then for any C 1 and compactly supported function f such that f dµ = 0,

For the standard Gaussian measure, we obtain Corollary 4. [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] The Gaussian measure γ satisfies the dimensional Poincaré inequality

for any C 1 and compactly supported function f such that f dγ = 0.

By the Cauchy-Schwarz inequality and integration by part,

Therefore, for the Gaussian measure, inequality (58) is stronger than [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] mentionned in the introduction (and naturally equality still holds for f = |x| 2 /2).

is defined in [START_REF] Cordero-Erausquin | Some applications of mass transport to Gaussian type inequalities[END_REF]. Equivalently, this inequality can be written as

Changing variables in the integral by letting x = z/t, and letting u = s/t, the inequality becomes ϕ -n u dx ≥ 1 for any u > 0, where for positive u

for any u > 0. The main goal is now to consider the limit as u → 0, by computing the limit

Proof ⊳ For any x ∈ R n , from the definition of ϕ u , we have for any h ∈ R n ,

It follows that lim sup u→0 + ϕu(x)-g(x) u ≤ -∇g(x) • h + W (h) for any h, and then by taking the infimum over h ∈ R n , lim sup

Now, one can observe that

where ε is an appropriate function satisfying lim u→0 ε(u) = 0. Let now r = sup{u|h|, uW (h) ≤ g(x)}. From the hypothesis (H1),

where D is a constant. Generally, D denotes a constant and can change from line to line. The bound (62) gives

Let now η > 0. Then there exists u 0 > 0 such that ∀u ∈ (0, u 0 ], ε D ug(x) ≤ η, so that

By (H1) the supremum is reached, say on a ball of center 0 and radius R > 0 independent of η < 1. Hence

The result follows by taking the superior limit and then letting η go to 0. ⊲ To compute the limit (60), we use the dominated convergence theorem. Since everywhere

when u → 0, we only need to give a uniform bound (in u) of the quantity of

.

For any 0 < a ≤ b, the following holds |a -n -b -n | ≤ n|a -b|a -1-n . Since 0 ≤ ϕ u (x) ≤ g(x) by definition of ϕ u , we can apply this inequality to a = ϕ u (x) and b = g(x), obtaining

Bound on |ϕ u (x) -g(x)|/u: First, from the equality in (61) and a Taylor expansion,

where Dg(x, s) = sup |x-y|≤s |∇g(y)|. We assume now that u ∈]0, 1]. Then, from (62), r ≤ D g(x). Hence, by (H1),

The explicit computation of the infimum gives

Then, from the hypothesis (H2), the estimation of Dg gives the bound

Bound on ϕ u (x):

From the hypotheses (H1) and (H2) we have

When u ∈]0, 1], the explicit computation of the infimum gives again

Finally, we have obtained the upper bound

The dominated convergence theorem can then be applied. The proof of Theorem 1.1 is then complete.

B Proof of Theorem 4.3

We adapt the argument of [START_REF] Bobkov | From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities[END_REF]. We will assume throughout the proof that V is C 3 with bounded derivatives ∇ 2 V and ∇ 3 V , and that there exists ρ > 0 such that uniformly in R n , Hess(V ) ≥ ρ Id n . Then the result extends to V as in the Theorem by approximation.

Let f be a C 1 compactly supported function satisfying f dµ = 0. We apply the Borell-Brascamp-Lieb inequality [START_REF] Bolley | Dimensional contraction via Markov transportation distance[END_REF] 

where Z δ = exp(2δf )dµ, and finally H = exp(φ δ -V ) where

Then [START_REF] Bolley | Dimensional contraction via Markov transportation distance[END_REF] ensures that e φ δ dµ ≥ 1. The rest of the proof is devoted to a Taylor expansion of exp(φ δ )dµ as δ goes to 0.

By convexity of V , for any δ > 0 the function in (63) to be minimised is coercive, so indeed admits a (possibly non unique) minimiser, which we first estimate by giving a Taylor expansion as δ → 0. For this, let δ > 0 be given and let h δ be any minimiser. Then

1. In a first step we prove that h δ = O(δ) uniformly in z: in other words, there exists a constant C > 0 such that for any δ small enough and any z ∈ R n ,

For this, first, since f dµ = 0 and f is compactly supported,

Let us now assume that the support of f is included in the ball {|x| < R} with R > 0. There are two cases, depending on whether |z

• First, assume that |z + h δ | ≥ R. Then equation (64) becomes

In other words, by (65) and taking the scalar product by h δ ,

In the sequel we let H(z) denote positive polynomial functions in V (z), ∇V (z), etc., independent of δ small and which can change from line to line. The latter inequality can then be written as

Let now X = ∇f • Hess(V ) -1 ∇V and Y = ∇V • Hess(V ) -1 ∇V. Taking the scalar product of (68) with Hess(V ) -1 ∇V one gets

at the point z, where o z (δ) satisfies (69) since in particular Hess(V ) -1 ≤ ρ -1 Id n . Then, again by (68),

where again o z (δ) satisfies (69).

We now compute the second-order Taylor expansion of the function φ δ . First, from the expansion e x = 1 + x + x 2 /2 + x 3 e θx /6 with θ ∈ (0, 1), we have at the point z,

Here ōz (δ 2 ) now satisfies

with

We now observe that for small δ one has φ δ (z) ≤ n log 2 for all z, that is, ψ δ (z) ≥ -1/2. Indeed, for small δ one has

65) and since f is bounded from above. Hence for any h

by convexity of e V /n . The bound on φ δ follows by its definition (63). Now from the expansion (1 + x) -n = 1 -nx + n(n + 1)x 2 /2 -n(n + 1)(n + 2)x 3 (1 + θx) -n-3 /6 with θ ∈ (0, 1) and (68), we get

for a ōz (δ 2 ) satisfying (70): here we use that ψ δ (z) ≥ -1/2 so that 1 + θψ δ ≥ 1/2 in the Taylor expansion, uniformly in z and δ. The above expressions of h δ and h δ • ∇V finally give

In conclusion, by integration the second-order Taylor expansion of the Borell-Brascamp-Lieb inequality (1 + ψ δ ) -n dµ = e φ δ dµ ≥ 1 implies

for all C 1 compactly supported f such that f dµ = 0. Here we use that δ -2 ōz (δ 2 )e -V (z) dz → 0 as δ → 0 by (70), since the right-hand side in (70) is in L 1 (e -V ) by our hypotheses on V . By definition of X and Y this concludes the argument.