Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting - Archive ouverte HAL
Article Dans Une Revue Nonlinear Analysis: Theory, Methods and Applications Année : 2015

Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting

Résumé

In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W 1 L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆ 2-condition. We conclude by discussing conditions for the existence of minima of I.
Fichier principal
Vignette du fichier
LagrangianoOrliczEnviado.pdf (363.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01171091 , version 1 (06-07-2015)

Identifiants

Citer

S Acinas, L Buri, G Giubergia, F Mazzone, E Schwindt. Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting. Nonlinear Analysis: Theory, Methods and Applications, 2015, 125, pp.681-698. ⟨10.1016/j.na.2015.06.013⟩. ⟨hal-01171091⟩
92 Consultations
164 Téléchargements

Altmetric

Partager

More