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Abstract

In this paper we consider the problem of finding periodic solutions of certain
Euler-Lagrange equations. We employ the direct method of the calculus of
variations, i.e. we obtain solutions minimizing certain functional I. We give
conditions which ensure that I is finitely defined and differentiable on certain
subsets of Orlicz-Sobolev spaces W 1LΦ associated to an N -function Φ. We show
that, in some sense, it is necessary for the coercitivity that the complementary
function of Φ satisfy the ∆2-condition. We conclude by discussing conditions
for the existence of minima of I.

Keywords: Periodic Solution, Orlicz-Sobolev Spaces, Euler-Lagrange,
N -function, Critical Points.

1. Introduction

This paper is concerned with the existence of periodic solutions of the pro-
blem {

d
dtDyL(t,u(t), u̇(t)) = DxL(t,u(t), u̇(t)) a.e. t ∈ (0, T )
u(0)− u(T ) = u̇(0)− u̇(T ) = 0

(1)
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where T > 0, u : [0, T ] → Rd is absolutely continuous and the Lagrangian
L : [0, T ]× Rd × Rd → R is a Carathéodory function satisfying the conditions

|L(t,x,y)| 6 a(|x|)
(
b(t) + Φ

(
|y|
λ + f(t)

))
, (2)

|DxL(t,x,y)| 6 a(|x|)
(
b(t) + Φ

(
|y|
λ + f(t)

))
, (3)

|DyL(t,x,y)| 6 a(|x|)
(
c(t) + ϕ

(
|y|
λ + f(t)

))
. (4)

In these inequalities we assume that a ∈ C(R+,R+), λ > 0, Φ is an N -function
(see section Preliminaries for definitions), ϕ is the right continuous derivative
of Φ and the non negative functions b, c and f belong to certain Banach spaces
that will be introduced later.

It is well known that problem (1) comes from a variational one, that is, a
solution of (1) is a critical point of the action integral

I(u) =

∫ T

0

L(t,u(t), u̇(t)) dt. (5)

Variational problems and hamiltonian systems have been studied extensively.
Classic references of these subjects are [1, 2, 3]. Problems like (1) have main-
tained the interest of researchers as the recent literature on the topic testifies.

For lagrangian functions of the type L(t,x,y) = |y|2
2 +F (t,x) many solvability

conditions have been given expanding the results of [1]. In [4] the function F
was split up into two potentials, one of them with a property of subadditivity
and the other with a bounded gradient. In [5] it was required a certain sublin-
earity condition on the gradient of the potential F ; and, in [6] it was considered
a potential F given by a sum of a subconvex function and a subquadratic one.

In [7] the uniform coercivity of
∫ T

0
F (t,x) dt was replaced by local coercivity of

F in some positive measure subset of [0, T ]. In [8], the authors took a similar
potential to that in [6] getting new solvability conditions and they also studied
the case in which the two potentials do not have any convexity.

The Lagrangian L(t,x,y) = |y|p
p + F (t,x) for p > 1 was treated in more

recent papers. By using the dual least action principle, in [9] it was performed
the extension of some results given in [1]; and, in [10] the authors improved
the work done in [6]. On the other hand, by the minimax methods in critical
point theory some existence theorems were obtained. In [11] it was employed a
subquadratic potential F in Rabinowitz’s sense and in [12] F was taken as in
[5].

Another source of problems, close to our proposal, is the one in which a p-
laplacian-like operator is involved. Assuming that the function ϕ is a homeomor-
phism from Rd into itself, it is considered the differential operator u 7→ (ϕ(u′))′.
In [13, 14, 15, 16, 17], using the Leray-Schauder degree theory, some existence
results of solutions of equations like (ϕ(u′))′ = f(t,u(t),u′(t)) were obtained
under different boundary conditions (periodic, Dirichlet, von Neumann) and
where f is not necessarily a gradient. We point out that our approach differs

2



from that of previous articles because we tackle the direct method of the calculus
of variations.

In the Orlicz-Sobolev space setting, in [18] a constrained minimization pro-
blem associated to the existence of eigenvalues for certain differential opera-
tors involving N -functions was studied. Slightly away from the problems to be
treated in this paper, we can mention [19, 20] where A. Cianchi dealt with the
regularity of minimizers of action integrals defined on several variable functions.

In this article we consider lagrangian functions defined on Orlicz-Sobolev
spaces W 1LΦ (see [21, 22, 23, 24]) and we use the direct method of calculus of
variations. The exposition is organized as follows. In Section 2 we enumerate
results related to Orlicz spaces, Orlicz-Sobolev spaces and composition opera-
tors. Almost all results in this section are essentially known. Conditions (2), (3)
and (4) are the means to ensure that I is finitely defined on a non trivial subset
of W 1LΦ

d and I is Gâteaux differentiable in this subset. We develop these issues
in Theorem 3.2 of Section 3. In Section 4 we prove that critical points of (5) are
solutions of (1). Conditions to guarantee the coercitivity of action integrals are
discussed in Section 5. Finally, our main theorem about existence of solutions
of (1) is introduced and proved in Section 6.

We lay emphasis on that we use ∆2-condition only when necessary in a
certain sense (see, for example, Lemma 5.2).

2. Preliminaries

For reader convenience, we give a short introduction to Orlicz and Orlicz-
Sobolev spaces of vector valued functions and a list of results that we will
use throughout the article. Classic references for Orlicz spaces of real valued
functions are [21, 22, 23]. For Orlicz spaces of vector valued functions, see [25]
and the references therein.

Hereafter we denote by R+ the set of all non negative real numbers. A
function Φ : R+ → R+ is called an N -function if Φ is given by

Φ(t) =

∫ t

0

ϕ(τ) dτ, for t ≥ 0,

where ϕ : R+ → R+ is a right continuous non decreasing function satisfying
ϕ(0) = 0, ϕ(t) > 0 for t > 0 and limt→∞ ϕ(t) = +∞.

Given a function ϕ as above, we consider the so-called right inverse function
ψ of ϕ which is defined by ψ(s) = supϕ(t)6s t. The function ψ satisfies the
same properties as the function ϕ, therefore we have an N -function Ψ such that
Ψ′ = ψ . The function Ψ is called the complementary function of Φ.

We say that Φ satisfies the ∆2-condition, denoted by Φ ∈ ∆2, if there exist
constants K > 0 and t0 ≥ 0 such that

Φ(2t) 6 KΦ(t) (6)

for every t ≥ t0. If t0 = 0, we say that Φ satisfies the ∆2-condition globally
(Φ ∈ ∆2 globally).
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Let d be a positive integer. We denote by Md := Md([0, T ]) the set of
all measurable functions defined on [0, T ] with values on Rd and we write u =
(u1, . . . , ud) for u ∈ Md. In this paper we adopt the convention that bold
symbols denote points in Rd.

Given an N -function Φ we define the modular function ρΦ : Md → R+ ∪
{+∞} by

ρΦ(u) :=

∫ T

0

Φ(|u|) dt.

Here | · | is the euclidean norm of Rd. The Orlicz class CΦ
d = CΦ

d ([0, T ]) is given
by

CΦ
d := {u ∈Md|ρΦ(u) <∞} . (7)

The Orlicz space LΦ
d = LΦ

d ([0, T ]) is the linear hull of CΦ
d ; equivalently,

LΦ
d := {u ∈Md|∃λ > 0 : ρΦ(λu) <∞} . (8)

The Orlicz space LΦ
d equipped with the Orlicz norm

‖u‖LΦ := sup

{∫ T

0

u · v dt
∣∣ρΨ(v) 6 1

}
,

is a Banach space. By u · v we denote the usual dot product in Rd between u
and v. The following alternative expression for the norm, known as Amemiya
norm, will be useful (see [22, Thm. 10.5] and [26]). For every u ∈ LΦ,

‖u‖LΦ = inf
k>0

1

k
{1 + ρΦ(ku)} . (9)

The subspace EΦ
d = EΦ

d ([0, T ]) is defined as the closure in LΦ
d of the subspace

L∞d of all Rd-valued essentially bounded functions. It is shown that EΦ
d is the

only one maximal subspace contained in the Orlicz class CΦ
d , i.e. u ∈ EΦ

d if and
only if ρΦ(λu) <∞ for any λ > 0.

A generalized version of Hölder’s inequality holds in Orlicz spaces. Namely,
if u ∈ LΦ

d and v ∈ LΨ
d then u · v ∈ L1

1 and∫ T

0

v · u dt 6 ‖u‖LΦ‖v‖LΨ . (10)

If X and Y are Banach spaces such that Y ⊂ X∗, we denote by 〈·, ·〉 : Y ×
X → R the bilinear pairing map given by 〈x∗, x〉 = x∗(x). Hölder’s inequality
shows that LΨ

d ⊂
[
LΦ
d

]∗
, where the pairing 〈v,u〉 is defined by

〈v,u〉 =

∫ T

0

v · u dt (11)

with u ∈ LΦ
d and v ∈ LΨ

d . Unless Φ ∈ ∆2, the relation LΨ
d =

[
LΦ
d

]∗
will not

hold. In general, it is true that
[
EΦ
d

]∗
= LΨ

d .
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Like in [22], we will consider the subset Π(EΦ
d , r) of LΦ

d given by

Π(EΦ
d , r) := {u ∈ LΦ

d |d(u, EΦ
d ) < r}.

This set is related to the Orlicz class CΦ
d by means of inclusions, namely,

Π(EΦ
d , r) ⊂ rCΦ

d ⊂ Π(EΦ
d , r) (12)

for any positive r. If Φ ∈ ∆2, then the sets LΦ
d , EΦ

d , Π(EΦ
d , r) and CΦ

d are equal.
We define the Sobolev-Orlicz space W 1LΦ

d (see [21]) by

W 1LΦ
d := {u|u is absolutely continuous and u, u̇ ∈ LΦ

d }.

W 1LΦ
d is a Banach space when equipped with the norm

‖u‖W 1LΦ = ‖u‖LΦ + ‖u̇‖LΦ .

For a function u ∈ L1
d([0, T ]), we write u = u + ũ where u = 1

T

∫ T
0
u(t) dt

and ũ = u− u.
As usual, if (X, ‖ · ‖X) is a Banach space and (Y, ‖ · ‖Y ) is a subspace of

X, we write Y ↪→ X and we say that Y is embedded in X when the restricted
identity map iY : Y → X is bounded. That is, there exists C > 0 such that
for any y ∈ Y we have ‖y‖X 6 C‖y‖Y . With this notation, Hölder’s inequality
states that LΨ

d ↪→
[
LΦ
d

]∗
; and, it is easy to see that for every N -function Φ we

have that L∞d ↪→ LΦ
d ↪→ L1

d.
Recall that a function w : R+ → R+ is called a modulus of continuity if w

is a continuous increasing function which satisfies w(0) = 0. For example, it
can be easily shown that w(s) = sΦ−1(1/s) is a modulus of continuity for every
N -function Φ. We say that u : [0, T ] → Rd has modulus of continuity w when
there exists a constant C > 0 such that

|u(t)− u(s)| 6 Cw(|t− s|). (13)

We denote by Cw([0, T ],Rd) the space of w-Hölder continuous functions.
This is the space of all functions satisfying (13) for some C > 0 and it is a
Banach space with norm

‖u‖Cw([0,T ],Rd) := ‖u‖L∞ + sup
t 6=s

|u(t)− u(s)|
w(|t− s|)

.

An important aspect of the theory of Sobolev spaces is related to embedding
theorems. There is an extensive literature on this question in the Orlicz-Sobolev
space setting, see for example [27, 28, 29, 30, 31]. The next simple lemma is
essentially known and we will use it systematically. For the sake of completeness,
we include a brief proof of it.

Lemma 2.1. Let w(s) := sΦ−1(1/s). Then, the following statements hold:
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1. W 1LΦ ↪→ Cw([0, T ],Rd) and for every u ∈W 1LΦ

|u(t)− u(s)| 6 ‖u̇‖LΦw(|t− s|), (14)

‖u‖L∞ 6 Φ−1

(
1

T

)
max{1, T}‖u‖W 1LΦ (Sobolev’s inequality). (15)

2. For every u ∈W 1LΦ we have ũ ∈ L∞d and

‖ũ‖L∞ 6 TΦ−1

(
1

T

)
‖u̇‖LΦ (Wirtinger’s inequality). (16)

Proof. For 0 6 s 6 t 6 T , we get

|u(t)− u(s)| 6
∫ t

s

|u̇(τ)| dτ

6 ‖χ[s,t]‖LΨ‖u̇‖LΦ

= ‖u̇‖LΦ(t− s)Φ−1

(
1

t− s

)
,

(17)

using Hölder’s inequality and [22, Eq. (9.11)]. This proves the inequality (14).
Since ui is continuous, from Mean Value Theorem for integrals, there exists

si ∈ [0, T ] such that ui(si) = ui. Using this si value in (14) with ui instead of
u and taking into account that sΦ−1(1/s) is increasing, we obtain Wirtinger’s
inequality for each ui. The inequality (16) follows easily from the corresponding
result for each component of u.

On the other hand, again by Hölder’s inequality and [22, Eq. (9.11)], we
have

|u| = 1

T

T∫
0

|u(s)|ds 6 Φ−1

(
1

T

)
‖u‖LΦ . (18)

From (16), (18) and the fact that u = u + ũ, we obtain (15). This completes
the proof of item 1.

Remark 1. As a consequence of the previous lemma, there exists a constant C,
only dependent on T , such that

‖u‖W 1LΦ 6 C (|u|+ ‖u̇‖LΦ) (19)

for every u ∈W 1LΦ
d .

The Arzelà-Ascoli Theorem implies that Cw([0, T ],Rd) ↪→ C([0, T ],Rd) is a
compact embedding (see [32, Ch. 5] for the case w(s) = |s|α with 0 < α 6
1; and, if w is arbitrary, the proof follows with some obvious modifications).
Therefore we have the subsequent result.

Corollary 2.2. Every bounded sequence {un} in W 1LΦ
d has an uniformly con-

vergent subsequence.
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Given a continuous function a ∈ C(R+,R+), we define the composition
operator a :Md →Md by a(u)(t) = a(|u(t)|). We will often use the following
elementary consequence of Lemma 2.1.

Corollary 2.3. If a ∈ C(R+,R+) then a : W 1LΦ
d → L∞1 ([0, T ]) is bounded.

More concretely, there exists a non decreasing function A : R+ → R+ such that
‖a(u)‖L∞([0,T ]) 6 A(‖u‖W 1LΦ).

Proof. Let α ∈ C(R+,R+) be a non decreasing majorant of a, for example
α(s) := sup06t6s a(t). If u ∈W 1LΦ

d then, by Lemma 2.1,

a(|u(t)|) 6 α(‖u‖L∞) 6 α

(
Φ−1

(
1

T

)
max{1, T}‖u‖W 1LΦ

)
=: A(‖u‖W 1LΦ).

The next lemma is an immediate consequence of principles related to ope-
rators of Nemitskii type, see [22, §17].

Lemma 2.4. The composition operator ϕ acts from Π(EΦ
d , 1) into CΨ

1 .

Proof. From [22, Lemma 9.1] we have thatϕ (BLΦ(0, 1)) ⊂ CΨ
1 , whereBX(u0, r)

is the open ball with center u0 and radius r > 0 in the space X. Now, applying
[22, Lemma 17.1], we deduce that ϕ acts from Π(EΦ

d , 1) into CΨ
1 .

We also need the following technical lemma.

Lemma 2.5. Let λ > 0 and let {un}n∈N be a sequence of functions in Π(EΦ
d , λ)

converging to u ∈ Π(EΦ
d , λ) in the LΦ-norm. Then, there exist a subsequence

unk
and a real valued function h ∈ Π

(
EΦ

1 ([0, T ]) , λ
)

such that unk
→ u a.e.

and |unk
| 6 h a.e.

Proof. Let r := d(u, EΦ
d ), r < λ. As un converges to u, there exists a subse-

quence (nk) such that

‖unk
− u‖LΦ <

λ− r
2

and ‖unk
− unk+1

‖LΦ < 2−(k+1)(λ− r).

Let h : [0, T ]→ R be defined by

h(x) = |un1
(x)|+

∞∑
k=2

|unk
(x)− unk−1

(x)|. (20)

As a consequence of [22, Lemma 10.1] (see [25, Thm. 5.5] for vector valued
functions), we have that d(v, EΦ

d ) = d(|v|, EΦ
1 ) for any v ∈ LΦ

d . Now

d(|un1
|, EΦ

1 ) = d(un1
, EΦ

d ) 6 d(un1
,u) + d(u, EΦ

d ) <
λ+ r

2
.

Then
d(h,EΦ

1 ) 6 d(h, |un1
|) + d(|un1

|, EΦ
1 ) < λ.
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Therefore, h ∈ Π(EΦ
1 , λ) and |h| <∞ a.e. We conclude that the series un1(x)+∑∞

k=2(unk
(x) − unk−1

(x)) is absolutely convergent a.e. and this fact implies
that unk

→ u a.e. The inequality |unk
| 6 h follows straightforwardly from the

definition of h.

A common obstacle in Orlicz spaces, that distinguishes them from Lp spaces,
is that a sequence un ∈ LΦ

d which is uniformly bounded by h ∈ LΦ
1 and a.e.

convergent to u is not necessarily norm convergent. Fortunately, the subspace
EΦ
d has this property.

Lemma 2.6. Suppose that un ∈ LΦ
d is a sequence such that un → u a.e. and

assume that there exists h ∈ EΦ
1 with |un| 6 h a.e., then ‖un − u‖LΦ → 0.

Proof. [23, p. 84] and [22, Thm. 10.3].

We recall some useful concepts.

Definition 2.7. Given a function I : U → R where U is an open set of a
Banach space X, we say that I has a Gâteaux derivative at u ∈ U if there exists
u∗ ∈ X∗ such that for every v ∈ X

lim
s→0

I(u+ sv)− I(u)

s
= 〈u∗,v〉.

See [33] for details.

Definition 2.8. Let X be a Banach space and let D ⊂ X. A non linear operator
T : D → X∗ is called demicontinuous if it is continuous when X is equipped
with the strong topology and X∗ with the weak∗ topology (see [34]).

3. Differentiability of action integrals in Orlicz spaces

We take a moment for discussing the relevance of the function f in the
inequalities (2), (3) and (4), which are a direct generalization of the conditions
[1, Eq (a), p. 10]. In particular, we are interested in seeing when for every
f ∈ EΦ

1 there exist b ∈ L1
1 and a constant C > 0 such that

Φ(s+ f(t)) 6 CΦ(s) + b(t) for every s > 0. (21)

If (21) is true, then we can suppose f = 0 in the equations (2) and (3) and the
same considerations should be done with ϕ (s+ f(t)).

The convexity of Φ allows us to bound Φ(s+f(t)) by the expression 1
2Φ(2s)+

b(t) where b(t) := 1
2Φ(2f(t)) ∈ L1

1 and f ∈ EΦ
1 . Therefore, we can always assume

f = 0 in (2) and (3) at the price of making the value of λ smaller. In the special
case that Φ ∈ ∆2, the inequality (6) implies (21).

If Φ /∈ ∆2, then (21) may not be true. In fact, if we consider the N -function
Φ(s) = es − s− 1 which does not satisfy the ∆2-condition and f(t) = ln | ln(t)|

8



for t ∈ [0, e−1], then (21) does not hold. First, note that f(t) ≥ 0 on [0, e−1]
and ∫ e−1

0

Φ(λf(t))dt 6
∫ e−1

0

eλf(t)dt 6
∫ e−1

0

| ln(t)|λdt <∞

for λ > 1, hence f ∈ EΦ
1 . Now, suppose that there exist b ∈ L1

1 and C > 0
satisfying (21). From the inequality 1/2es 6 Φ(s) + 1, we obtain

1

2
esef(t) 6 Φ(s+ f(t)) + 1 6 Ces + b(t) + 1;

next, dividing by es and taking s→∞, we get 1
2 | ln(t)| 6 C which is a contra-

diction.
Before addressing the main results of this section, we recall a definition.

Definition 3.1. We say that a function L : [0, T ] × Rd × Rd → R is a
Carathéodory function if for fixed (x,y) the map t 7→ L(t,x,y) is measur-
able and for fixed t the map (x,y) 7→ L(t,x,y) is continuously differentiable for
almost everywhere t ∈ [0, T ].

Theorem 3.2. Let L be a Carathéodory function satisfying (2), (3) and (4).
Then the following statements hold:

1. The action integral given by (5) is finitely defined on EΦ
d (λ) := W 1LΦ

d ∩
{u|u̇ ∈ Π(EΦ

d , λ)}.
2. The function I is Gâteaux differentiable on EΦ

d (λ) and its derivative I ′ is

demicontinuous from EΦ
d (λ) into

[
W 1LΦ

d

]∗
. Moreover, I ′ is given by the

following expression

〈I ′(u),v〉 =

∫ T

0

{
DxL

(
t,u, u̇

)
· v +DyL

(
t,u, u̇

)
· v̇
}
dt. (22)

3. If Ψ ∈ ∆2 then I ′ is continuous from EΦ
d (λ) into

[
W 1LΦ

d

]∗
when both

spaces are equipped with the strong topology.

Proof. Let u ∈ EΦ
d (λ). Since λΠ(EΦ

d , r) = Π(EΦ
d , λr), we have u̇/λ ∈ Π(EΦ

d , 1).
Thus, as f ∈ EΦ

1 and attending to (12), we get

|u̇|/λ+ f ∈ Π(EΦ
1 , 1) ⊂ CΦ

1 . (23)

By Corollary 2.3 and (2), we get

|L(·,u, u̇)| 6 A(‖u‖W 1LΦ)

(
b+ Φ

(
|u̇|
λ

+ f

))
∈ L1

1.

This fact proves item 1.
We split up the proof of item 2 into four steps.

Step 1. The non linear operator u 7→ DxL(t,u, u̇) is continuous from EΦ
d (λ)

into L1
d([0, T ]) with the strong topology on both sets.
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If u ∈ EΦ
d (λ), from (3) and (23), we obtain

|DxL(·,u, u̇)| 6 A(‖u‖W 1LΦ)

(
b+ Φ

(
|u̇|
λ

+ f

))
∈ L1

1. (24)

Let {un}n∈N be a sequence of functions in EΦ
d (λ) and let u ∈ EΦ

d (λ) such
that un → u in W 1LΦ

d . From un → u in LΦ
d , there exists a subsequence unk

such that unk
→ u a.e.; and, as u̇n → u̇ ∈ EΦ

d (λ), by Lemma 2.5, there exist
a subsequence of unk

(again denoted unk
) and a function h ∈ Π(EΦ

1 , λ)) such
that u̇nk

→ u̇ a.e. and |u̇nk
| 6 h a.e. Since unk

, k = 1, 2, . . . , is a strong
convergent sequence in W 1LΦ

d , it is a bounded sequence in W 1LΦ
d . According to

Lemma 2.1 and Corollary 2.3, there exists M > 0 such that ‖a(unk
)‖L∞ 6M ,

k = 1, 2, . . .. From the previous facts and (24), we get

|DxL(·,unk
, u̇nk

)| 6M

(
b+ Φ

(
|h|
λ

+ f

))
∈ L1

1.

On the other hand, by the Carathéodory condition, we have

DxL(t,unk
(t), u̇nk

(t))→ DxL(t,u(t), u̇(t)) for a.e. t ∈ [0, T ].

Applying the Dominated Convergence Theorem we conclude the proof of step
1.
Step 2. The non linear operator u 7→ DyL(t,u, u̇) is continuous from EΦ

d (λ)

with the strong topology into
[
LΦ
d

]∗
with the weak∗ topology.

Let u ∈ EΦ
d (λ). From (23) and Lemma 2.4, it follows that

ϕ

(
|u̇|
λ

+ f

)
∈ CΨ

1 ; (25)

and, Corollary 2.3 implies a(u) ∈ L∞1 . Therefore, in virtue of (4) we get

|DyL(·,u, u̇)| 6 A(‖u‖W 1LΦ)

(
c+ ϕ

(
|u̇|
λ

+ f

))
∈ LΨ

1 . (26)

Note that (24), (26) and the imbeddings W 1LΦ
d ↪→ L∞d and LΨ

d ↪→
[
LΦ
d

]∗
imply

that the second member of (22) defines an element in
[
W 1LΦ

d

]∗
.

Let un,u ∈ EΦ
d (λ) such that un → u in the norm of W 1LΦ

d . We must prove

that DyL(·,un, u̇n)
w∗
⇀ DyL(·,u, u̇). On the contrary, there exist v ∈ LΦ

d , ε > 0
and a subsequence of {un} (denoted {un} for simplicity) such that

|〈DyL(·,un, u̇n),v〉 − 〈DyL(·,u, u̇),v〉| ≥ ε. (27)

We have un → u in LΦ
d and u̇n → u̇ in LΦ

d . By Lemma 2.5, there exist a
subsequence unk

and a function h ∈ Π(EΦ
1 , λ) such that unk

→ u a.e., u̇nk
→

u̇ a.e. and |u̇nk
| 6 h a.e. As in the previous step, since un is a convergent

sequence, the Corollary 2.3 implies that a(|un(t)|) is uniformly bounded by a

10



certain constant M > 0. Therefore, with unk
instead of u, inequality (26)

becomes

|DyL(·,unk
, u̇nk

)| 6M

(
c+ ϕ

(
h

λ
+ f

))
∈ LΨ

1 . (28)

Consequently, as v ∈ LΦ
d and employing Hölder’s inequality, we obtain that

sup
k
|DyL(·,unk

, u̇nk
) · v| ∈ L1

1.

Finally, from the Lebesgue Dominated Convergence Theorem, we deduce∫ T

0

DyL(t,unk
, u̇nk

) · v dt→
∫ T

0

DyL(t,u, u̇) · v dt (29)

which contradicts the inequality (27). This completes the proof of step 2.
Step 3. We will prove (22). The proof follows similar lines as [1, Thm. 1.4].

For u ∈ EΦ
d (λ) and 0 6= v ∈W 1LΦ

d , we define the function

H(s, t) := L(t,u(t) + sv(t), u̇(t) + sv̇(t)).

From [22, Lemma 10.1] (or [25, Thm. 5.5] ) we obtain that if |u| 6 |v| then
d(u, EΦ

d ) 6 d(v, EΦ
d ). Therefore, for |s| 6 s0 :=

(
λ− d(u̇, EΦ

d )
)
/‖v‖W 1LΦ we

have

d
(
u̇+ sv̇, EΦ

d

)
6 d

(
|u̇|+ s|v̇|, EΦ

1

)
6 d

(
|u̇|, EΦ

1

)
+ s‖v̇‖LΦ < λ.

Thus u̇+ sv̇ ∈ Π(EΦ
d , λ) and |u̇|+ s|v̇| ∈ Π(EΦ

1 , λ). These facts imply, in virtue
of Theorem 3.2 item 1, that I(u + sv) is well defined and finite for |s| 6 s0.
And, using Corollary 2.3, we also see that

‖a(|u+ sv|)‖L∞ 6 A(‖u+ sv‖W 1LΦ) 6 A(‖u‖W 1LΦ + s0‖v‖W 1LΦ) =: M

Now, applying Chain Rule, (24), (26) the monotonicity of ϕ and Φ, the fact
that v ∈ L∞d and v̇ ∈ LΦ

d and Hölder’s inequality, we get

|DsH(s, t)| = |DxL(t,u+ sv, u̇+ sv̇) · v +DyL(t,u+ sv, u̇+ sv̇) · v̇|

6M

[(
b(t) + Φ

(
|u̇|+ s0|v̇|

λ
+ f(t)

))
|v|

+

(
c(t) + ϕ

(
|u̇|+ s0|v̇|

λ
+ f(t)

))
|v̇|
]
∈ L1

1.

(30)

Consequently, I has a directional derivative and

〈I ′(u),v〉 =
d

ds
I(u+ sv)

∣∣
s=0

=

∫ T

0

{DxL(t,u, u̇) · v +DyL(t,u, u̇) · v̇} dt.

Moreover, from (24), (26), Lemma 2.1 and the previous formula, we obtain

|〈I ′(u),v〉| 6 ‖DxL‖L1‖v‖L∞ + ‖DyL‖LΨ‖v̇‖LΦ 6 C‖v‖W 1LΦ
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with a appropriate constant C. This completes the proof of the Gâteaux differ-
entiability of I.

Step 4. The operator I ′ : EΦ
d (λ) →

[
W 1LΦ

d

]∗
is demicontinuous. This is

a consequence of the continuity of the mappings u 7→ DxL(t,u, u̇) and u 7→
DyL(t,u, u̇). Indeed, if un,u ∈ EΦ

d (λ) with un → u in the norm of W 1LΦ
d and

v ∈W 1LΦ
d , then

〈I ′(un),v〉 =

∫ T

0

{DxL (t,un, u̇n) · v +DyL (t,un, u̇n) · v̇} dt

→
∫ T

0

{DxL (t,u, u̇) · v +DyL (t,u, u̇) · v̇} dt

= 〈I ′(u),v〉 .

In order to prove item 3, it is necessary to see that the maps u 7→ DxL(t,u, u̇)
and u 7→ DyL(t,u, u̇) are norm continuous from EΦ

d (λ) into L1
d and LΨ

d respec-
tively. The continuity of the first map has already been proved in step 1. Let
un,u ∈ EΦ

d (λ) with ‖un − u‖W 1LΦ → 0. Therefore, there exist a subsequence
unk

∈ EΦ
d (λ) and a function h ∈ Π(EΦ

1 , λ) such that (28) holds true. And, as
Ψ ∈ ∆2 then the right hand side of (28) belongs to EΨ

1 . Now, invoking Lemma
2.6, we prove that from any sequence un which converges to u in W 1LΦ

d we can
extract a subsequence such that DyL(t,unk

, u̇nk
)→ DyL(t,u, u̇) in the strong

topology. The desired result is obtained by a standard argument.
The continuity of I ′ follows from the continuity of DxL and DyL using the

formula (22).

4. Critical points and Euler-Lagrange equations

In this section we derive the Euler-Lagrange equations associated to critical
points of action integrals on the subspace of T -periodic functions. We denote
by W 1LΦ

T the subspace of W 1LΦ
d containing all T -periodic functions. As usual,

when Y is a subspace of the Banach space X, we denote by Y ⊥ the annihilator
subspace of X∗, i.e. the subspace that consists of all bounded linear functions
which are identically zero on Y .

We recall that a function f : Rd → R is called strictly convex if f
(
x+y

2

)
<

1
2 (f (x) + f (y)) for x 6= y. It is well known that if f is a strictly convex and
differentiable function, then Dxf : Rd → Rd is a one-to-one map (see, e.g. [35,
Thm. 12.17]).

Theorem 4.1. Let u ∈ EΦ
d (λ) be a T -periodic function. The following state-

ments are equivalent:

1. I ′(u) ∈
(
W 1LΦ

T

)⊥
.

2. DyL(t,u(t), u̇(t)) is an absolutely continuous function and u solves the
following boundary value problem{

d
dtDyL(t,u(t), u̇(t)) = DxL(t,u(t), u̇(t)) a.e. t ∈ (0, T )
u(0)− u(T ) = DyL(0,u(0), u̇(0))−DyL(T,u(T ), u̇(T )) = 0.

(31)

12



Moreover if DyL(t, x, y) is T -periodic with respect to the variable t and strictly
convex with respect to y, then DyL(0,u(0), u̇(0))−DyL(T,u(T ), u̇(T )) = 0 is
equivalent to u̇(0) = u̇(T ).

Proof. The condition I ′(u) ∈
(
W 1LΦ

T

)⊥
and (22) imply∫ T

0

DyL(t,u(t), u̇(t)) · v̇(t) dt = −
∫ T

0

DxL(t,u(t), u̇(t)) · v(t) dt,

for every v ∈ W 1LΦ
T . By [1, pp. 6-7] we obtain that DyL(t,u(t), u̇(t)) is

absolutely continuous and T -periodic, therefore it is differentiable a.e. on [0, T ]
and the first equality of (31) holds true. This completes the proof of 1 implies
2. The proof of 2 implies 1 follows easily from (22) and (31).

The last part of the theorem is a consequence of DyL(T,u(T ), u̇(T ))
= DyL(0,u(0), u̇(0)) = DyL(T, u(T ), u̇(0)) and the injectivity ofDyL(T, u(T ), ·).

5. Coercivity discussion

We recall a usual definition in the context of calculus of variations.

Definition 5.1. Let X be a Banach space and let D be an unbounded subset of
X. Suppose that J : D ⊂ X → R. We say that J is coercive if J(u) → +∞
when ‖u‖X → +∞.

It is well known that coercivity is a useful ingredient in the process of estab-
lishing existence of minima. Therefore, we are interested in finding conditions
which ensure the coercivity of the action integral I acting on EΦ

d (λ). For this
purpose, we need to introduce the following extra condition on the lagrangian
function L

L(t,x,y) ≥ α0Φ

(
|y|
Λ

)
+ F (t,x), (32)

where α0,Λ > 0 and F : R×Rd → R is a Carathéodory function, i.e. F (t,x) is
measurable with respect to t for every fixed x ∈ Rd and it is continuous at x for
a.e. t ∈ [0, T ]. We observe that, from (32) and (2), we have F (t,x) 6 a(|x|)b0(t)
with b0(t) := b(t) + Φ(f(t)) ∈ L1

1([0, T ]). In order to guarantee that integral∫ T
0
F (t,u) dt is finite for u ∈W 1LΦ, we need to assume

|F (t,x)| 6 a(|x|)b0(t), for a.e. t ∈ [0, T ] and for every x ∈ Rd. (33)

As we shall see in Theorem 5.3, when L satisfies (2), (3), (4), (32) and (33), the
coercivity of the action integral I is related to the coercivity of the functional

JC,ν(u) := ρΦ

(u
Λ

)
− C‖u‖νLΦ , (34)

for C, ν > 0. If Φ(x) = |x|p/p then JC,ν is clearly coercive for ν < p. For more
general Φ the situation is more interesting as it will be shown in the following
lemma.

13



Lemma 5.2. Let Φ and Ψ be complementary N -functions. Then:

1. If CΛ < 1, then JC,1 is coercive.

2. If Ψ ∈ ∆2 globally, then there exists a constant αΦ > 1 such that, for any
0 < µ < αΦ,

lim
‖u‖LΦ→∞

ρΦ

(
u
Λ

)
‖u‖µ

LΦ

= +∞. (35)

In particular, the functional JC,µ is coercive for every C > 0 and 0 < µ <
aΦ. The constant αΦ is one of the so-called Matuszewska-Orlicz indices
(see [36, Ch. 11]).

3. If JC,1 is coercive with CΛ > 1, then Ψ ∈ ∆2.

Proof. By (9) we have

(1− CΛ)‖u‖LΦ + CΛ‖u‖LΦ = ‖u‖LΦ 6 Λ + ΛρΦ

(u
Λ

)
,

then
(1− CΛ)

Λ
‖u‖LΦ − 1 6 ρΦ

(u
Λ

)
− C‖u‖LΦ = JC,1(u).

This inequality shows that JC,1 is coercive and therefore item 1 is proved.
In virtue of [37, Eq. (2.8)], the ∆2-condition on Ψ, [36, Thm. 11.7] and [36,

Cor. 11.6], we obtain constants K > 0 and αΦ > 1 such that

Φ(rs) ≥ KrνΦ(s) (36)

for any 0 < ν < αΦ, s ≥ 0 and r > 1.
Let 1 < µ < ν < αΦ and let r > Λ be a constant that will be specified later.

Then, from (36) and (9), we get∫ T
0

Φ
(
|u|
Λ

)
dt

‖u‖µ
LΦ

≥ K
( r

Λ

)ν ∫ T
0

Φ(r−1|u|) dt
‖u‖µ

LΦ

≥ K
( r

Λ

)ν r−1‖u‖LΦ − 1

‖u‖µ
LΦ

.

We choose r = ‖u‖LΦ/2. Since ‖u‖LΦ → +∞ we can assume ‖u‖LΦ > 2Λ.
Thus r > Λ and∫ T

0
Φ
(
|u|
Λ

)
dt

‖u‖µ
LΦ

≥ K

2νΛν
‖u‖ν−µ

LΦ → +∞ as ‖u‖LΦ → +∞,

because ν > µ.
With the aim of proving item 3, we suppose that Ψ /∈ ∆2. By [22, Thm.

4.1], there exists a sequence of real numbers rn such that rn →∞ and

lim
n→∞

rnψ(rn)

Ψ(rn)
= +∞. (37)
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Now, we choose un such that |un| = Λψ(rn)χ[0, 1
Ψ(rn)

]. Then, by [22, Eq. (9.11)],

we get

‖un‖LΦ = Λ
ψ(rn)

Ψ(rn)
Ψ−1(Ψ(rn)) = Λ

rnψ(rn)

Ψ(rn)
→∞, as n→∞.

And, using Young’s equality (see [22, Eq. (2.7)]), we have

JC,1(un) =

∫ T

0

Φ

(
|un|
Λ

)
dt− C‖un‖LΦ

=
1

Ψ(rn)
[Φ(ψ(rn))− CΛrnψ(rn)]

=
1

Ψ(rn)
[rnψ(rn)−Ψ(rn)− CΛrnψ(rn)]

=
(1− CΛ)rnψ(rn)

Ψ(rn)
− 1.

From (37) and the condition CΛ > 1, we obtain JC,1(un) → −∞, which con-
tradicts the coercivity of JC,1.

Next, we present two results that establish coercivity of action integrals
under different assumptions.

Theorem 5.3. Let L be a lagrangian function satisfying (2), (3), (4), (32) and
(33). We assume the following conditions:

1. There exist a non negative function b1 ∈ L1
1 and a constant µ > 0 such

that for any x1,x2 ∈ Rd and a.e. t ∈ [0, T ]

|F (t,x2)− F (t,x1)| 6 b1(t)(1 + |x2 − x1|µ). (38)

We suppose that µ < αΦ, with αΦ as in Lemma 5.2, in the case that
Ψ ∈ ∆2; and, we suppose µ = 1 if Ψ is an arbitrary N -function.

2. ∫ T

0

F (t,x) dt→∞ as |x| → ∞. (39)

3. Ψ ∈ ∆2 or, alternatively, α−1
0 TΦ−1 (1/T ) ‖b1‖L1Λ < 1.

Then the action integral I is coercive.

Proof. In the subsequent estimates, we use (32), the decomposition u = u+ ũ,
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Hölder’s inequality and Wirtinger’s inequality.

I(u) ≥ α0ρΦ

(
u̇

Λ

)
+

∫ T

0

F (t,u) dt

= α0ρΦ

(
u̇

Λ

)
+

∫ T

0

[F (t,u)− F (t,u)] dt+

∫ T

0

F (t,u) dt

≥ α0ρΦ

(
u̇

Λ

)
−
∫ T

0

b1(t)(1 + |ũ(t)|µ) dt+

∫ T

0

F (t,u) dt

≥ α0ρΦ

(
u̇

Λ

)
− ‖b1‖L1(1 + ‖ũ‖µL∞) +

∫ T

0

F (t,u) dt

≥ α0ρΦ

(
u̇

Λ

)
− ‖b1‖L1

(
1 +

[
TΦ−1

(
1

T

)]µ
‖u̇‖µ

LΦ

)
+

∫ T

0

F (t,u) dt

= α0JC,µ(u̇)− ‖b1‖L1 +

∫ T

0

F (t,u) dt,

(40)

where C = α−1
0

[
TΦ−1 (1/T )

]µ ‖b1‖L1 . Let un be a sequence in EΦ
d (λ) with

‖un‖W 1LΦ → ∞ and we have to prove that I(un) → ∞. On the contrary,
suppose that for a subsequence, still denoted by un, I(un) is upper bounded.
Then, from (19) and passing to a subsequence, we can assume that u̇n is un-
bounded in LΦ

d or un is unbounded in Rd. On the other hand, (33) and (39)

imply that the integral
∫ T

0
F (t,un) dt is lower bounded. These observations,

the lower bound of I given in (40), assumption 3 in Theorem 5.3 and Lemma
5.2 imply that I(un) is not upper bounded. This contradiction leads us to the
desired result.

Based on [1] we say that F satisfies the condition (A) if F (t,x) is a Carathéo-
dory function, F verifies (33) and F is continuously differentiable with respect
to x. Moreover, the next inequality holds

|DxF (t,x)| 6 a(|x|)b0(t), for a.e. t ∈ [0, T ] and for every x ∈ Rd. (41)

The following result was proved in [1, p. 18].

Lemma 5.4. Suppose that F satisfies condition (A) and (39), F (t, ·) is di-
fferentiable and convex a.e. t ∈ [0, T ]. Then, there exists x0 ∈ Rd such that∫ T

0

DxF (t,x0) dt = 0. (42)

Theorem 5.5. Let L be as in Theorem 5.3 and let F be as in Lemma 5.4. More-
over, assume that Ψ ∈ ∆2 or, alternatively α−1

0 TΦ−1 (1/T ) a(|x0|)‖b0‖L1Λ < 1,
with a and b0 as in (33) and x0 ∈ Rd any point satisfying (42). Then I is
coercive.
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Proof. Using (32), [1, Eq. (18), p.17], the decomposition u = u+ ũ, (42), (10)
and Wirtinger’s inequality, we get

I(u) ≥ α0ρΦ

(
u̇

Λ

)
+

∫ T

0

F (t,x0) dt+

∫ T

0

DxF (t,x0) · (u− x0) dt

= α0ρΦ

(
u̇

Λ

)
+

∫ T

0

F (t,x0) dt+

∫ T

0

DxF (t,x0) · ũ dt

+

∫ T

0

DxF (t, x0) · (u− x0) dt

= α0ρΦ

(
u̇

Λ

)
+

∫ T

0

F (t,x0) dt+

∫ T

0

DxF (t,x0) · ũ dt

≥ α0ρΦ

(
u̇

Λ

)
− a(|x0|)‖b0‖L1 − a(|x0|)‖b0‖L1TΦ−1

(
1

T

)
‖u̇‖LΦ

= α0JC,1(u̇)− a(|x0|)‖b0‖L1

(43)

with C := α−1
0 a(|x0|)‖b0‖L1TΦ−1(1/T ).

Let α be as in Corollary 2.3, i.e. α is a non decreasing majorant of a. Using
that F (t,u/2) 6 (1/2)F (t,u)+(1/2)F (t,−ũ) and taking into account that Φ is
a non negative function, inequality (33), Hölder’s inequality, Corollary 2.3 and
Wirtinger’s inequality, we obtain

I(u) ≥ α0ρΦ

(
u̇

Λ

)
+ 2

∫ T

0

F (t,u/2) dt−
∫ T

0

F (t,−ũ) dt

≥ 2

∫ T

0

F (t,u/2) dt− ‖b0‖L1‖a(ũ)‖L∞

≥ 2

∫ T

0

F (t,u/2) dt− ‖b0‖L1α(‖ũ‖L∞)

≥ 2

∫ T

0

F (t,u/2) dt− C1α(C2‖u̇‖LΦ)

(44)

for certain constants C1, C2 > 0.
Finally, reasoning in a similar way to that developed in the end of the proof

of Theorem 5.3 we have that I(un)→∞.

6. Main result

In order to find conditions for the lower semicontinuity of I, we perform a
little adaptation of a result of [3].

Lemma 6.1. Let L(t,x,y) and F (t,x) be Carathéodory functions satisfying

L(t,x,y) ≥ Φ (|y|) + F (t,x), (45)

where Φ is an N -function. In addtion, suppose that F satisfies inequality (33)
and L(t,x, ·) is convex in Rd for each (t,x) ∈ [0, T ] × Rd. Let {un} ⊂ W 1LΦ
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be a sequence such that un converges uniformly to a function u ∈ W 1LΦ and
u̇n converges in the weak topology of L1

d to u̇. Then

I(u) 6 lim inf
n→∞

I(un). (46)

Proof. First, we point out that (45) and (33) imply that I is defined on W 1LΦ

taking values on the interval (−∞,+∞]. Let {un} be a sequence satisfying the
assumptions of the theorem. We define the Carathéodory function L̂ = L − F
and we denote by Î its associated action integral. Using [3, Thm. 2.1, p. 243],
we get ∫ T

0

L̂(t,u, u̇) dt 6 lim inf
n→∞

∫ T

0

L̂(t,un, u̇n) dt. (47)

Taking account of the uniform convergence of un and the fact that F is a
Carathéodory function, we obtain that F (t,un(t)) → F (t,u(t)) a.e. t ∈ [0, T ].
Since the sequence un is uniformly bounded, from (33) follows that there exists
g ∈ L1

1([0, T ]) such that |F (t,un(t))| 6 g(t). Now, by the Dominated Conver-
gence Theorem, we have that

lim
n→∞

∫ T

0

F (t,un(t)) dt =

∫ T

0

F (t,u(t)) dt. (48)

Finally, as a consequence of (47) and (48), we obtain (46).

Theorem 6.2. Let Φ and Ψ be complementary N -functions. Suppose that the
Carathéodory function L(t,x,y) is strictly convex at y, DyL is T -periodic with
respect to T and (2), (3), (4), (32), (33) and (39) are satisfied. In addition,
assume that some of the following statements hold (we recall the definitions and
properties of α0, b1, x0 and b0 from (32), (38), (42) and (41) respectively):

1. Ψ ∈ ∆2 and (38).

2. (38) and α−1
0 TΦ−1 (1/T ) ‖b1‖L1Λ < 1.

3. Ψ ∈ ∆2, F satisfies condition (A) and F (t, ·) is convex a.e. t ∈ [0, T ].

4. As item 3 but with α−1
0 TΦ−1 (1/T ) a(|x0|)‖b0‖L1Λ < 1 instead of Ψ ∈ ∆2.

Then, problem (1) has a solution.

Proof. First of all, note that (32), (33) and (39) imply that I is ,lower bounded
on W 1LΦ

T . Let {un} ⊂ W 1LΦ
T be a minimizing sequence for the problem

min{I(u)|u ∈ W 1LΦ
T }. Since I(un), n = 1, 2, . . . is bounded, Theorem 5.3 (or

Theorem 5.5 according to which of the items 1-4 hold true) implies that {un}
is norm bounded in W 1LΦ

d . Hence, in virtue of Corollary 2.2, we can assume
that un converges uniformly to a T -periodic continuous function u. The space
LΦ
d is a predual space, concretely LΦ

d =
[
EΨ
d

]∗
. Thus, by [23, Cor. 5, p. 148]

and since u̇n is bounded in LΦ
d , there exists a subsequence (again denoted by

18



u̇n) such that u̇n converges to a function v ∈ LΦ
d in the weak* topology of LΦ

d .
From this fact and the uniform convergence of un to u, we obtain that∫ T

0

ξ̇ · u dt = lim
n→∞

∫ T

0

ξ̇ · un dt = − lim
n→∞

∫ T

0

ξ · u̇n dt = −
∫ T

0

ξ · v dt

for every T -periodic function ξ ∈ C∞([0, T ],Rd) ⊂ EΨ
d . Thus v = u̇ a.e.

t ∈ [0, T ] (see [1, p. 6]) and u ∈W 1LΦ
T .

Now, taking into account the relations
[
L1
d

]∗
= L∞d ⊂ EΨ

d and LΦ
d ⊂ L1

d,
we have that u̇n converges to u̇ in the weak topology of L1

d. Consequently,
Theorem 6.1 applied to the N -function α0Φ (| · |/Λ) implies that

I(u) 6 lim inf
n→∞

I(un) = min
u∈W 1LΦ

T

I(u).

Hence, u is a minimun and therefore a critical point of I. Finally, invoking
Theorem 4.1, the proof concludes.
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[22] M. A. Krasnosel′skĭı, J. B. Rutickĭı, Convex functions and Orlicz spaces,
P. Noordhoff Ltd., Groningen, 1961.

[23] M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Vol. 146, Marcel Dekker,
Inc., New York, 1991.

[24] M. M. Rao, Z. D. Ren, Applications of Orlicz spaces, Marcel Dekker, Inc.,
New York, 2002.

[25] G. Schappacher, A notion of Orlicz spaces for vector valued functions, Appl.
Math. 50 (4) (2005) 355–386.

[26] H. Hudzik, L. Maligranda, Amemiya norm equals Orlicz norm in general,
Indag. Math. (N.S.) 11 (4) (2000) 573–585.

[27] A. Cianchi, A fully anisotropic Sobolev inequality, Pacific J. Math. 196 (2)
(2000) 283–295.

[28] A. Cianchi, Some results in the theory of Orlicz spaces and applications to
variational problems, in: Nonlinear analysis, function spaces and applica-
tions, Vol. 6 (Prague, 1998), Acad. Sci. Czech Repub., Prague, 1999, pp.
50–92.

[29] N. Clavero, Optimal Sobolev embeddings and Function Spaces, http:

//www.maia.ub.edu/~soria/sobolev1.pdf, last accessed: 2014-12-22.
(2011).

[30] D. Edmunds, R. Kerman, L. Pick, Optimal Sobolev imbeddings involving
rearrangement-invariant quasinorms, J. Funct. Anal. 170 (2) (2000) 307–
355.

[31] R. Kerman, L. Pick, Optimal Sobolev imbeddings, Forum Math. 18 (4)
(2006) 535–570.

[32] B. Driver, Analysis tools with applications, http://www.math.ucsd.edu/

~bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf,
last accessed: 2014-12-22. (2003).

[33] A. Ambrosetti, G. Prodi, A primer of nonlinear analysis, Cambridge Uni-
versity Press, Cambridge, 1995.

[34] T. Kato, Demicontinuity, hemicontinuity and monotonicity, Bull. Amer.
Math. Soc. 70 (1964) 548–550.

[35] R. T. Rockafellar, R. Wets, Variational analysis, Springer-Verlag, Berlin,
1998.

[36] L. Maligranda, Orlicz spaces and interpolation, Vol. 5 of Seminários de
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