Low-Rank Tensor Approximations for Reliability Analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Low-Rank Tensor Approximations for Reliability Analysis

Résumé

Low-rank tensor approximations have recently emerged as a promising tool for efficiently building surrogates of computational models with high-dimensional input. In this paper, we shed light on issues related to their construction with greedy approaches and demonstrate that meta-models built with small experimental designs can be used to estimate tail probabilities with high accuracy.
Fichier principal
Vignette du fichier
Paper_159_Konakli.pdf (418.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01169564 , version 1 (29-06-2015)

Identifiants

  • HAL Id : hal-01169564 , version 1

Citer

Katerina Konakli, Bruno Sudret. Low-Rank Tensor Approximations for Reliability Analysis. 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Jul 2015, Vancouver, Canada. ⟨hal-01169564⟩

Collections

CNRS
87 Consultations
185 Téléchargements

Partager

More