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ABSTRACT: Low-rank tensor approximations have recently emerged as a promising tool for efficiently
building surrogates of computational models with high-dimensional input. In this paper, we shed light on
issues related to their construction with greedy approaches and demonstrate that meta-models built with
small experimental designs can be used to estimate tail probabilities with high accuracy.

1. INTRODUCTION

Advances in computer science in combination with
an improved understanding of physical laws lead to
the development of increasingly complex compu-
tational models for simulating behaviors of physi-
cal and engineering systems. Unfortunately, uncer-
tainty propagation through such models becomes
intractable in many practical situations when the
computational cost of a single simulation is high.
A remedy is the use of surrogate models, also
called meta-models, which possess similar statis-
tical properties with the original models, but have
simple functional forms and are thus inexpensive to
evaluate.

Polynomial Chaos Expansions (PCE) represent
the model response as an expansion onto a basis
of orthonormal multivariate polynomials obtained
as tensor products of appropriate univariate polyno-
mials. Although this meta-modeling approach has
proven powerful in a wide range of applications, it
suffers from the curse of dimensionality, meaning
the exponential growth of the basis size - and there-
fore of the unknown coefficients - with the dimen-
sion of the random input.

A promising alternative for efficiently build-
ing meta-models in high-dimensional spaces using
polynomial functions is offered by Low-Rank Ap-
proximations (LRA) (e.g. Nouy (2010), Doostan
et al. (2013)). LRA exploit the tensor-product form

of the polynomial basis to express the random re-
sponse as a sum of a small number of rank-one
functions. Such representations drastically reduce
the number of unknown coefficients with respect to
PCE, with this number growing only linearly with
the input dimension.

Existing algorithms for building LRA are based
on greedy approaches, where the polynomial coef-
ficients in separate dimensions are alternately up-
dated and the rank of the approximation is pro-
gressively increased. These algorithms involve a
sequence of error-minimization problems of small
size that can be easily solved with standard tech-
niques. However, stopping criteria and selection of
optimal rank are open questions that call for further
investigations.

The aim of the present paper is to introduce and
demonstrate the potential of LRA in the context of
reliability analysis as well as to shed light on as-
pects of their construction. The paper is organized
as follows: In Section 2, the mathematical setup of
the problem is described. Following a brief review
of PCE in Section 3, LRA are presented in Section
4. In Section 5, we employ LRA to develop meta-
models of the responses of a beam and a truss struc-
ture; in these applications, we investigate properties
of the greedy constructions and demonstrate the ef-
ficiency of LRA for evaluating small probabilities
of failure, also in comparison to PCE.
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2. SURROGATE MODELS WITH NON-
INTRUSIVE APPROACHES

Let us consider a physical or engineering system
whose behavior is represented by a - possibly com-
plex - computational model M . We denote by
XXX = {X1, . . . ,XM} the M-dimensional random in-
put and by Y a scalar response quantity of interest.
Our goal is to develop a surrogate Ŷ of the exact
model response Y = M (XXX), i.e. an approximate
model that possesses similar statistical properties,
but has a simple functional form.

Non-intrusive methods for building surrogate
models are of interest in the present study. Such
methods rely on a series of calls to the determinis-
tic computational model, which may be used with-
out any modification. Building a meta-model in a
non-intrusive manner requires an Experimental De-
sign (ED) comprising a set of realizations of the
input vector, E = {χχχ(1), . . . ,χχχ(N)}, and the corre-
sponding model evaluations at these points, Y =
{M (χχχ(1)), . . . ,M (χχχ(N))}.

Let us consider a set of realizations of the input
vector, X = {xxx1, . . . ,xxxn}. In order to define mea-
sures of accuracy of a meta-model, we introduce
the semi-inner product

< a , b >X =
1
n

n

∑
i=1

a(xxxi) b(xxxi), (1)

leading to the semi-norm ‖ a ‖X =< a, a >
1/2
X . A

good measure of accuracy is the generalization er-

ror, ErrG = E
[(

Y − Ŷ
)2
]

, which can be estimated

by

ÊrrG =
∥∥∥Y − Ŷ

∥∥∥2

Xval
, (2)

where Xval = {xxx1, . . . ,xxxnval} is a sufficiently large
set of realizations of the input vector, denoted vali-
dation set. The relative generalization error can be
estimated by normalizing ÊrrG with the empirical
variance of Yval = {M (xxx1), . . . ,M (xxxnval)}, i.e.

êrrG =
ÊrrG

Var [Yval]
. (3)

In cases when one cannot afford the additional
model evaluations required to compute ÊrrG, an er-
ror estimate based on the ED may be used instead.

This is the empirical error, ÊrrE , given by

ÊrrE =
∥∥∥Y − Ŷ

∥∥∥2

E
. (4)

The respective relative error is obtained by nor-
malizing ÊrrE with the empirical variance of Y =
{M (χχχ(1)), . . . ,M (χχχ(N))}, i.e.

êrrE =
ÊrrE

Var [Y ]
. (5)

It should be noted that ÊrrE tends to underestimate
ErrG, which might be severe in cases of overfitting.

3. POLYNOMIAL CHAOS EXPANSIONS
Let us assume that the components of XXX are in-
dependent with joint Probability Density Func-
tion (PDF) fXXX(xxx) and marginal PDFs fXi(xi), i =
1, . . . ,M.

Polynomial Chaos Expansions (PCE) approxi-
mate the exact model response Y = M (XXX) as

Ŷ = ∑
ααα∈A

yαααΨααα(XXX), (6)

where {Ψααα ,ααα ∈ A } is a set of multivariate poly-
nomials with multi-indices ααα = (α1, . . . ,αM) that
are orthonormal with respect to fXXX(xxx) and yααα de-
notes the corresponding polynomial coefficients.
The multivariate polynomials are obtained by ten-
sorization of univariate polynomials, i.e.

Ψααα(XXX) =
M

∏
i=1

ψ
(i)
αi (Xi), (7)

where ψ
(i)
αi (Xi) is a polynomial of degree αi in the

i-th input variable belonging to a family of polyno-
mials that are orthonormal with respect to fXi(xi).

For standard distributions, the associated fam-
ily of orthonormal polynomials is well-known; for
instance, a uniform variable with support [−1,1]
is associated with the family of Legendre polyno-
mials, whereas a standard normal variable is as-
sociated with the family of Hermite polynomials.
Other cases can be treated through an isoprobabilis-
tic transformation of XXX to a basic random vector UUU
e.g. a standard normal or a standard uniform vector.
Cases with mutually dependent input variables can
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also be treated through an isoprobabilistic transfor-
mation (e.g. Nataf transformation) to a vector of
independent standard variables.

The set of multi-indices A is determined by an
appropriate truncation scheme. A common scheme
consists in selecting multivariate polynomials up to
a total degree pt , i.e. {ψααα , ααα ∈ NM : |ααα| ≤ pt},
where |ααα|= ∑

M
i=1 αi. The corresponding number of

terms in the truncated series is

cardA =

(
M+ pt

pt

)
=

(M+ pt)!
M!pt!

. (8)

For other advanced truncation schemes, the reader
is referred to Blatman and Sudret (2011).

Once the basis has been specified, the set of coef-
ficients yyy = {yααα , ααα ∈A } may be computed as the
solution of

yyy= arg min
υυυ∈RcardA

E

[(
M (XXX)− ∑

ααα∈A
υαααΨααα(XXX)

)2
]
.

(9)
By replacing the expectation operator with the em-
pirical mean over a sample set, the above equa-
tion becomes a standard least-squares minimization
problem, which may be solved with well-known
techniques. A more efficient approach leading to
sparse PCE is the Least Angle Regression (LAR)
method (see Blatman and Sudret (2011) for further
details).

Note that in Eq.(8) the number of basis elements
grows exponentially with the input dimension M.
Consequently, the number of model evaluations re-
quired to compute the polynomial coefficients may
be prohibitively large in high-dimensional prob-
lems. This limitation, known as the curse of di-
mensionality, constitutes a bottleneck in the PCE
approach. A promising alternative is offered by
canonical decompositions, described in the sequel.

4. LOW-RANK APPROXIMATIONS
4.1. Canonical decompositions
A rank-1 function of the input vector XXX =
{X1, . . . ,XM} is a function of the form

w(XXX) =
M

∏
i=1

v(i)(Xi), (10)

where v(i)(Xi) is a univariate function of Xi. A rep-
resentation of the random response Y = M (XXX) as
a sum of rank-1 functions constitutes a canonical
decomposition; this reads

Ŷ =
R

∑
l=1

bl

(
M

∏
i=1

v(i)l (Xi)

)
, (11)

where v(i)l (Xi) denotes a univariate function of Xi in
the l-th rank-1 component, bl are normalizing con-
stants and R defines the rank of the decomposition.

Herein, we consider decompositions with each
univariate function v(i)l (Xi) expanded onto a poly-
nomial basis that is orthonormal with respect to
fXi(xi), i.e.

Ŷ =
R

∑
l=1

bl

(
M

∏
i=1

(
pi

∑
k=0

z(i)k,l P(i)
k (Xi)

))
, (12)

where P(i)
k is the k-th degree univariate polynomial

in the i-th input variable of maximum degree pi

and z(i)k,l is the coefficient of P(i)
k in the l-th rank-1

term. A representation in the form of Eq.(12) dras-
tically reduces the number of unknowns compared
to Eq.(6). In the case when pi = p, i = 1, . . . ,M,
the number of unknowns in a rank-R decomposition
is P = ((p+1)M+1)R, which grows only linearly
with M. Naturally, decompositions with small R are
of interest, leading to the name Low-Rank Approx-
imations (LRA).

4.2. Construction of low-rank approximations
Algorithms proposed in the literature for building
LRA are based on greedy approaches, where the
polynomial coefficients along each dimension are
sequentially updated and the rank of the decom-
position is progressively increased. The algorithm
proposed by Chevreuil et al. (2013b) involves a se-
quence of pairs of a correction step and an updating
step. In a correction step, a rank-1 tensor is built,
whereas in an updating step, the set of normalizing
coefficients bl is determined. A modified version of
this algorithm is employed in the subsequent exam-
ple applications; details are given next.

Let us denote by Ŷr the rank-r approximation of
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Y = M (XXX), i.e.

Ŷr =
r

∑
l=1

blwl, (13)

where wl represents the l-th rank-1 component

wl =
M

∏
i=1

(
pi

∑
k=0

z(i)k,l P(i)
k (Xi)

)
. (14)

In the r-th correction step, the rank-1 tensor wr is
built by solving the minimization problem

wr = arg min
ω∈W
‖Rr−1−ω‖2

E , (15)

where W is the space of rank-1 tensors and Rr−1 =
Y − Ŷr−1 denotes the residual after the (r− 1)-th
step. The sequence of Ŷr is initiated by setting
Ŷ0 = 0. Eq.(15) is solved through successive min-
imizations along each direction i = 1, . . . ,M. In
the minimization along direction j, the polyno-
mial coefficients in all other directions are "frozen"
at their current values and the coefficients zzz( j)

r =

{z( j)
1,r . . .z

( j)
p j,r} are determined as

zzz( j)
r = arg min

ζζζ∈Rp j

∥∥∥∥∥Rr−1−C( j) ·

(
p j

∑
k=0

ζk P( j)
k (X j)

)∥∥∥∥∥
2

E

,

(16)
where

C( j) = ∏
i6= j

pi

∑
k=0

z(i)k,r P(i)
k (Xi). (17)

A correction step may involve several iterations
over the set of directions {1, . . . ,M}. We propose
a stopping criterion that combines the number of it-
erations over the set {1, . . . ,M}, denoted Ir, with
the decrease in the relative empirical error between
two successive iterations, denoted ∆êrrr, where the
empirical error is given by

êrrr =
‖Rr−1−wr‖2

E

Var [Y ]
. (18)

We require that the algorithm exits the r-th correc-
tion step if either Ir reaches a maximum allowable
value Imax or ∆êrrr becomes smaller than a thresh-
old ∆êrrmin.

After the completion of a correction step, the al-
gorithm moves to an updating step, in which the set
of coefficients bbb = {b1, . . . ,br} is obtained as

bbb = arg min
βββ∈Rr

∥∥∥∥∥Y − r

∑
l=1

βl wl

∥∥∥∥∥
2

E

. (19)

Note that in each updating step, the size of vector
bbb increases by one. In the r-th updating step, the
value of the new element br is determined for the
first time, whereas the values of the existing ele-
ments {b1, . . . ,br−1} are updated.

The above algorithm relies on the solution of sev-
eral small least-squares minimization problems (of
size pi + 1, i = 1, . . . ,M, in each correction step
and of size r in the r-th updating step), which can
be solved using the Ordinary Least Squares (OLS)
method. More efficient solution schemes can be de-
veloped by replacing Eq.(16) and Eq.(19) with re-
spective regularized problems.

The progressive construction results in a set of
LRA of increasing rank. Chevreuil et al. (2013a)
propose selection of the optimal rank using 3-fold
Cross Validation (CV). In the general case of k-fold
CV, the ED is randomly partitioned in k sets of ap-
proximately equal size. A meta-model is built con-
sidering all but one of the partitions (training set)
and the excluded set is used to evaluate the gener-
alization error (testing set). By alternating through
the k sets, k meta-models are obtained; the average
generalization error of those provides an estimate of
the error of the meta-model built with the full ED.
In the context of LRA, the above technique yields
k meta-models of progressively increasing rank as
well as the respective error estimates. The rank
yielding the smallest average generalization error
is identified as optimal and a new decomposition
having the indicated rank is built using the full ED.
The average generalization error corresponding to
the selected rank provides an estimate of the actual
error of the final meta-model.

5. EXAMPLE APPLICATIONS
5.1. Beam deflection
We consider a simply supported beam with a rect-
angular cross section of width b and height h, length
L and Young’s modulus E. The beam is subjected to
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a concentrated load P at the midpoint of the span.
The aforementioned quantities are modeled by in-
dependent random variables following the distribu-
tions listed in Table 1. Of interest is to construct
LRA of the mid-span deflection, u = PL3/4Ebh3,
in terms of the M = 5 input random variables. We
use ED of varying sizes, N, drawn with Sobol sam-
pling and assess the accuracy of the meta-models
with a validation set of size nval = 104 drawn with
Monte Carlo Simulation (MCS).

Table 1: Distributions of random variables.

Variable Distribution mean CoV
b (m) Lognormal 0.15 0.05
h (m) Lognormal 0.3 0.05
L (m) Lognormal 5 0.01

E (MN/m2) Lognormal 3e4 0.15
P (MN) Lognormal 0.01 0.20

First, we investigate rank selection by means of
3-fold CV. After preliminary investigations, we set
p1 = . . . = p5 = 5, Imax = 50 and ∆êrrmin = 10−8.
Considered candidate ranks vary from 1 to 20. For
different N, Figure 1 compares the rank R selected
with 3-fold CV with the actual optimal rank yield-
ing the minimum generalization error estimated
with the validation set. The corresponding relative
generalization errors are shown in Figure 2. The
figures demonstrate that although the two ranks do
not coincide in all cases, the corresponding general-
ization errors have only small differences. Overall,
the meta-models are highly accurate; it is notewor-
thy that an accuracy of the order of 10−5 is achieved
with an ED of size as small as N = 50.

Next, we examine optimal values of the error
threshold in the correction step. Other parameters
are fixed to their values above. For three different
sizes of ED and ∆êrrmin varying from 10−9 to 10−4,
Figure 3 shows the relative generalization errors for
ranks selected with 3-fold CV. It is observed that
the accuracy of LRA strongly depends on ∆êrrmin,
particularly for the smaller ED. Selection of the op-
timal error threshold is a compromise between the
desired accuracy and the number of iterations in the
correction step.

In the following, LRA are confronted with PCE,

50 100 200 500 1000

1

10

20

N

R

 

 
ED (3−fold CV)
validation set

Figure 1: Rank selected with 3-fold CV and actual opti-
mal rank based on validation set.
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10
−10

10
−8
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−6
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N

ê
r
r
G

 

 
ED (3−fold CV)
validation set

Figure 2: Relative generalization errors for rank se-
lected with 3-fold CV and for actual optimal rank.
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−8
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−6

10
−4
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N = 200
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Figure 3: Relative generalization errors for different
stopping criteria.
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considering meta-models of optimal polynomial
degrees for both approaches. In LRA, the optimal
common maximum degree p is selected using 3-
fold CV (other parameters are same as in Figures 1
and 2). In PCE, the candidate basis is determined
by setting a maximum total degree pt and then,
evaluating the coefficients with the LAR method
(see Section 3); the optimal pt is selected by means
of the Leave-One-Out (LOO) error (see Blatman
and Sudret (2011) for details). Figure 4 shows the
relative generalization errors of the resulting meta-
models for N varying in 50− 1,000 (the corre-
sponding optimal p varies in 3−6, whereas optimal
pt varies in 2− 5). Clearly, LRA outperform PCE
for all considered N, yielding meta-models that are
2 to 3 orders of magnitude more accurate. It is re-
markable that LRA achieve an accuracy of the order
of 10−6 with only N = 50 points (p = 3).

50 100 200 500 1000
10

−10

10
−8

10
−6

10
−4

10
−2

N

ê
r
r
G

 

 
LRA
PCE

Figure 4: Comparison of relative generalization errors
of LRA and PCE.

Finally, we assess LRA versus PCE in the evalua-
tion of tail probabilities required in reliability anal-
ysis. Of interest is the probability that the beam de-
flection exceeds a prescribed threshold ulim, called
failure probability. We compare the failure proba-
bilities evaluated using the actual model to the fail-
ure probabilities evaluated using LRA and PCE;
these are respectively denoted Pf , P̂LRA

f and P̂PCE
f .

Because u follows a lognormal distribution, an an-
alytical solution is available for Pf . P̂LRA

f and P̂PCE
f

are evaluated with a MCS approach as N f /Nt ,
where Nt = 107 is the total number of points in

MCS and N f is the number of points at which
u > ulim. For ulim varying between 4mm and 10mm,
Figure 5 compares the three failure probabilities
considering the LRA and PCE meta-models in Fig-
ure 4 for N = 50. Obviously, the approximation
of all failure probabilities using LRA is excellent,
whereas use of PCE considerably underestimates
small failure probabilities when Pf < 10−3. We
note that although the PCE meta-model has a rela-
tively small relative generalization error (of the or-
der of 10−3), it provides particularly poor approxi-
mations at the tails of the response distribution.

4 5 6 7 8 9 10

x 10
−3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

ulim(m)

P

 

 
Pf

P̂f

LRA

P̂f

PCE

Figure 5: Comparison of failure probabilities evaluated
with LRA and PCE to a reference value (N = 50).

5.2. Truss deflection
We now consider the simply supported truss in Fig-
ure 6, loaded with vertical loads P1, . . . ,P6. The
cross-sectional area and Young’s modulus of the
horizontal bars are respectively denoted A1 and E1,
whereas the cross-sectional area and Young’s mod-
ulus of the vertical bars are respectively denoted A2
and E2. The aforementioned quantities are modeled
by independent random variables following the dis-
tributions listed in Table 2. The response quantity
of interest is the mid-span deflection, u, which is
computed with a finite-element analysis code. We
construct LRA of u in terms of the M = 10 input
variables using Sobol-sampling based ED of vary-
ing sizes, N. The accuracy of the meta-models is
assessed with a MCS-based validation set of size
nval = 104.
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6 x 4m

 2
m

P1 P2 P3 P4 P5 P6

u

Figure 6: Truss structure.

Table 2: Distributions of random variables.

Variable Distribution mean CoV
A1 (m) Lognormal 0.002 0.10
A2 (m) Lognormal 0.001 0.10

E1,E2 (N/m2) Lognormal 2.1e11 0.10
P1, . . . ,P6 (N) Gumbel 5e4 0.15

Figure 7 compares the rank R ∈ [1,20] selected
with 3-fold CV with the actual optimal rank (based
on the validation set) for the case p1 = . . .= p10 =
3, Imax = 50 and ∆êrrmin = 10−5. The correspond-
ing relative generalization errors are shown in Fig-
ure 8. We observe that 3-fold CV always selects
R = 1, which is the actual optimal rank except for
N = 1,000. Note that in this case, the size of
ED only slightly affects the accuracy of the meta-
model.

50 100 200 500 1000

1

10

20

N

R

 

 
ED (3−fold CV)
validation set

Figure 7: Rank selected with 3-fold CV and actual opti-
mal rank based on validation set.

Figure 9 shows the relative generalization er-
rors of LRA with rank selected with 3-fold CV for
∆êrrmin varying from 10−6 to 10−1 and other pa-
rameters fixed to their previous values. It is ob-
served that ∆êrrmin has a significant effect on the
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ê
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r
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ED (3−fold CV)
validation set

Figure 8: Relative generalization errors for rank se-
lected with 3-fold CV and for actual optimal rank.

meta-model accuracy only for the smallest consid-
ered ED.

10
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−4

10
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10
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10
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10
−6

10
−4

10
−2

10
0
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ê
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r
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N = 50
N = 200
N = 1000

Figure 9: Relative generalization errors for different
stopping criteria.

As in the former example, LRA are confronted
with PCE, considering meta-models of optimal
polynomial degrees (common degree p of univari-
ate polynomials in LRA and total degree pt of mul-
tivariate polynomials in PCE). Figure 10 shows the
relative generalization errors of the resulting meta-
models for N varying in 50− 1,000 (the corre-
sponding optimal p varies in 2−3, whereas optimal
pt varies in 2−4). In this case, LRA perform better
than PCE for the smaller ED, whereas the reverse
is true for the larger ones. Note however that al-
though LRA yield fairly accurate meta-models for
all N, this is not true for PCE and the smaller N.
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PCE

Figure 10: Comparison of relative generalization er-
rors of LRA and PCE.

We conclude the example by assessing LRA ver-
sus PCE in reliability analysis. Of interest is the
probability u > ulim, where ulim varies between
10cm and 16cm. The reference failure probabili-
ties Pf are taken from Sudret (2007), whereas P̂LRA

f

and P̂PCE
f are computed with a MCS sample of

size Nt = 107. Figure 11 compares the three fail-
ure probabilities considering the LRA and PCE
meta-models in Figure 10 for N = 100. We ob-
serve that use of LRA leads to fairly accurate es-
timates of the reference probabilities, whereas use
of PCE is largely inaccurate (for ulim = 14cm and
ulim = 16cm, use of PCE yields N f = 0).

0.1 0.11 0.12 0.13 0.14 0.15 0.16
10

−7

10
−6

10
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10
−4

10
−3

10
−2

10
−1

ulim(m)

P

 

 
Pf

P̂f

LRA

P̂f

PCE

Figure 11: Comparison of failure probabilities evalu-
ated with LRA and PCE to a reference value (N = 100).

6. CONCLUSIONS
By drastically reducing the number of unknowns
with respect to Polynomial Chaos Expansions
(PCE), Low-Rank Approximations (LRA) com-
prise a promising tool against the curse of dimen-
sionality. After examining issues in their construc-
tion with greedy approaches, we have shown that
LRA may be used to accurately evaluate tail proba-
bilities in reliability analysis with experimental de-
signs that prove inadequately small for the PCE ap-
proach.
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