3-D skeleton joints-based action recognition using covariance descriptors on discrete spherical harmonics transform - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

3-D skeleton joints-based action recognition using covariance descriptors on discrete spherical harmonics transform

Résumé

In this paper, we explore a new method for skeleton-based human action recognition. First, the normalized angles of local joints are extracted and Spherical Harmonics Transform (SHT) can then be used to explicitly model the angular skeleton by projecting the spherical angles onto unit sphere basis. This enables that the skeleton representation can be decomposed into a basis functions. We adopt the spatiotemporal covariance matrix of the spherical harmonic to capture joints orientations over the human action sequence. Thus, the co-variance coefficients of joints are used as a discriminative de-scriptor for the sequence. We validate the proposed method using Extreme Learning Machine (ELM) classifier and recent published 3D action datasets. Experimental results show that our method performs better than many classical methods.
Fichier principal
Vignette du fichier
icip2015.pdf (251.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01168436 , version 1 (25-06-2018)

Identifiants

  • HAL Id : hal-01168436 , version 1

Citer

Adnan Al Alwani, Youssef Chahir. 3-D skeleton joints-based action recognition using covariance descriptors on discrete spherical harmonics transform. International Conference on Image Processing (ICIP 2015), IEEE, Sep 2015, Québec, Canada. ⟨hal-01168436⟩
125 Consultations
102 Téléchargements

Partager

More