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ABSTRACT

In this paper, we explore a new method for skeleton-based
human action recognition. First, the normalized angles of lo-
cal joints are extracted and Spherical Harmonics Transform
(SHT) can then be used to explicitly model the angular skele-
ton by projecting the spherical angles onto unit sphere basis.
This enables that the skeleton representation can be decom-
posed into a basis functions. We adopt the spatiotemporal
covariance matrix of the spherical harmonic to capture joints
orientations over the human action sequence. Thus, the co-
variance coefficients of joints are used as a discriminative de-
scriptor for the sequence. We validate the proposed method
using Extreme Learning Machine (ELM) classifier and recent
published 3D action datasets. Experimental results show that
our method performs better than many classical methods.

Index Terms—
Spherical Harmonics Transform, Skeleton Joints, Covari-

ance Descriptor, Extrem Learning Machine

1. INTRODUCTION

Human action can be captured by either 2D RGB camera or
recent release of 3D sensor. In the former case the holistic or
body parts of human are used for human action recognition.
however Despite the finding of these approaches, the monoc-
ular RGB data is still restricted by the various factors like
shading, body part occlusion and background noise. More-
over, 2D video sensors cannot fully register the 3D motion of
the human using single camera. On the other hand, the 3D in-
formation captured by RGB-Depth (RGB-D) sensor are used
recently for human action recognition. The RGB-D such as
kinect sensor provides both the 2D image as well as the depth
map.

According to the motivation of [5] and the articulated
structure of human body, human actions can be abstracted by
a set of 3-D joints locations of poses. In which, the detection
of the human posture by means of skeleton joints is practi-
cally achieved through further processing of the depth data.
Based on the study of [24] , it obvious that using joints loca-
tions alone may provides a good human motion representation

for action recognition task. However, in the field of 3D-based
action recognition the trend has been focused on using the
depth and skeleton joints data to develop an efficient methods
for specific task recognition [22], and computer vision appli-
cations, etc... To this end, features estimation from skeleton
body joints is relatively faster due to low dimensionality of
the features vector and encodes a better view invariance.

This paper attempts to address the sequences of skeletal-
joints representation problem in an explicit model. In this
model, a novel feature descriptor is used based on the Spheri-
cal Harmonic Transform (SHT) of temporally local joints and
the covariance coefficients. The main objective of our ap-
proach is based on the calculation of the SHT of spherical
angles of local joints to explicitly model the displacement of
each individual joint. Unlike the works in [3, 10, 13] that con-
sider the spatial-relation between individuals joints. While
the present study is related to recent approaches in skeleton
descriptor [3], it capitalizes on a new feature space, which
was not considered in these earlier studies.

Let a spherical coordinates of skeleton joint Ji denoted
by (θ, φ), the model of temporal evolution ofJi can be repre-
sented using spherical harmonic of θ and φ orientation respec-
tively. Then, to handle frame length variations, for each action
category, we introduce the covariance technique to compute
the covariance coefficients of each SHs matrix. Collecting the
computed covariance coefficients of all selected local joints
forms the skeleton features representation for an action se-
quence. Finally, we perform the evaluation procedure using
ELM classifier and multiple 3D action datasets.

2. RELATED WORKS

With advance imaging techniques, such as Microsoft Kinect,
an action recognition is abstracted by a set of simple ex-
tracted and low dimensional features. Moreover, using skele-
ton joints locations captured by this sensor, the body pose
estimation, as well as action recognition can be achieved ef-
ficiently. In this section, we summarize various methods that
only use skeleton data, and more related to our approach. A



rich material of the human motion analysis from depth data,
can be found in [1].

Human skeleton was represented in [3] using 3D skeleton
joint locations and the temporal evolutions were modeled us-
ing a temporal hierarchy of covariance descriptors. In [6], 3D
coordinates of joints were used and the action sequence was
modeled with a generative discrete HMM. Action recognition
was performed using multi-class Adaboost. The proposed
work in [17] used the idea of pairwise relative locations of the
joints in order to represent human skeleton. The temporal dis-
placement were characterized using a coefficients of Fourier
pyramid hierarchy. The authors proposed an actionlet-based
approach in which learning kernel approach was used in or-
der to effectively candidates the meaningful joint combina-
tions. In [[20]], the authors adopted a representation based
on eigenjoint descriptor calculated from each frame. The ac-
tion recognition was performed using the Naive-Bayes near-
est neighbor. In [12] the task of action recognition is achieved
by random forests classifier. A view invariant representation
of human skeleton was proposed in [18] by partitioning the
3D spherical coordinates into angular spaced bins, based on
the aligned orientations with respect to a coordinate system
registered at the hip center. Then, a generative HMMs classi-
fier classifies each visual code word. Besides that, the authors
of [13] used the idea of the skeletal quad to encodes the rela-
tion of local joint in a quadruples form. The skeletal quads are
generated by a Fisher kernel representation based on Gaussian
mixture model. In [10] a human skeleton was represented as
points in the Lie group. The proposed representation explic-
itly models the 3D geometric relationships between various
body parts, using rotations and translations. Since the Lie
group is a curved manifold, they map all the action curves
from the Lie group to its Lie algebra and the temporal evolu-
tions were modeled using dynamic time warping (DTW).

3. SHPERICAL HARMONICS

In this section, we briefly discuss the spherical harmonics
transform, the classical introduction of SHs can be found
in[14]. Spherical harmonics are the solution to a variety of
problems that relay on an orthonormal basis s2. SHs was
used for solving PDEs in geophysics, quantum mechanics,
as well as a host of computer vision and computer graphics
related applications [16, 11].

Suppose that the SHs denoted by yml , are the angular solu-
tion that satisfies Laplace’s formula in spherical coordinates:
radial distance r ∈ R+ , azimuth angle θ ∈ [0, 2π] and el-
evation angle φ ∈ [0, π]. Then, the standard SHs have the
expression [14]:

Y m
l (θ, φ) = Km

l P
m
l cos(θ) exp(jmφ). (1)

Where Pm
l cos(θ) are the associated Legendre polynomials of

degree l and orderm, defined by the differential equation as

Fig. 1. Construction of the 3D joints descriptor
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The term Km
l is normalization constant, equal to

Km
l =

√(
(l + 1

4m

)
(l − |m|)!
(l + |m|)!

. (3)

Since the spherical harmonics is analogue to Fourier series on
the unit sphere, any functionfmay be defined by a set of a lin-
ear combination of the harmonics basis. For this , the function
x(θ.φ) is decomposed in terms of the spherical harmonics as
:

x(θ, φ) =

l max∑
l=0

l∑
m=−l

Cm
l Y

m
l (θ, φ). (4)

WhereCm
l is the expansion coefficients, and Y m

l (.) is the real
coefficients of the spherical harmonic given by :

Y m
l (θ, φ) =

√
2Km

l cos(mφ)Pm
l (x), for m > 0. (5)

4. 3D POSE DESCRIPTOR

4.1. Overview

Regardless of the skeleton structure being used, temporal se-
quence discrimination into different action classes is a dif-
ficult task due to challenges like frame numbers variations in
each action, and temporal joints dependency. To address these
problems for each action class, we propose a highly discrim-
inative 3D pose descriptor. Particularly, we introduce a novel
skeleton-joints descriptor that is based on covariance between
local joints. As shown in Fig. 1, the descriptor is designed by
finding the covariance coefficients on the spherical harmonics



of local joints. We sample these coefficients over the time of
the action sequence.

The idea of covariance descriptor was first adopted by [7]
as a region descriptor of an image and texture-based classi-
fication [8]. The idea of spatio-temporal patch-based covari-
ance descriptor is recently introduced as an action recognition
framework [2]. In our work, we compute the spatio-temporal
covariance coefficients between local joints along the time se-
quence.

4.2. Covariance-based descriptor for body skeleton joints

Suppose we have the entire skeleton structure is represented
by Q joints, and the action is performed over T time se-
quence (frame). Let H denote harmonics data matrix of a
set of spherical harmonics {h1, ..hn}. Because sets of related
spherical harmonics of Q joints are considered for whole ac-
tion, the 2-D SHs hi of length m = v × u is expressed
in column vector i.e. = vect(h). Thus, the harmonic data
H is anM × Q matrix, and defined as H = {h1, ...,hQ}
where typically,M > Q with fixed Q. Having obtained the
harmonic data matrixH , the covariance elements over the se-
quence T is given by [3] :

C(H) =
1

T − 1

T∑
t=1

(H − H̄)(H − H̄). (6)

Where H̄ is the sample mean of H .
In our case, we sample the lower part elements of the co-

variance matrix C(.). Thus, the length of the descriptor is
Q(Q+ 1)/2. Where Q is the number of skeleton joints used
to represent the action sequence.

5. ACTION CLASSIFICATION

We employ Extreme Learning Machine ELM for the action
classification. Recently, this learning algorithm has been ap-
plied to solve recent skeleton-based human action recognition
problem [23]. ELM has been extensively devoted for learn-
ing single hidden layer feedforward neural networks SLFNs
[21]providing fast learning time and accurate results.
We start the learning stage by assuming that there are M ac-
tions A = A1, ...AM and the row vector y = [y1, ...yM ] indi-
cates the action that the sequence belongs to. Note that, each
action sequence c is represented by the features of its frames,
calculated as described in section 4 i.e (c, y) form a set of
training pairs for the classifier.

For the training samples P{x, y} where xi ∈ Rn and
yi ∈ Rm, the output function of ELM model with N hidden
neurons can be represented as [21] :

fn(x) =

N∑
i=1

ωiψi(x) = Ψ(x)Ω. (7)

Fig. 2. Marked skeleton joints as captured by the
Kinect sensor

Where Ω = [ω1, , ωN ] is the output weight vector relate the
N hidden nodes to the m > 1 output nodes, and Ψ(x) =
[ψ1(x), ..ψN (x)] is a nonlinear activation function [21]. In
particular, the system ψi(x) can be written in explicit from as
:

ψi(x) = β(τi.x+ εi), τi ∈ Rd, εi ∈ R. (8)

Where β(.) is a mapping function, with hidden layer parameters
(τ, ε). In the second stage of ELM learning, the errors be-
tween training data and the output weight Ω, is solved by
minimizing the solution of the following term

min‖ΨΩ−T‖2,Ω ∈ RN∗M . (9)

WhereΨ define the system of the hidden neurons layer given
as

Ψ =

 ψ(x1)
...

ψ(xN)

 . (10)

And T is the training data matrix denoted as

T =

 tT1
...

tTN

 . (11)

Using the Moore-Penrose generalized inverse of matrix Ψ,
the optimal solution to (9) can be found as [21].

Ω∗ = Ψ∗T. (12)

Where Ψ∗ denotes the inverse of Ψ.

6. EXPERIMENTS

In this section, quantitative results of action recognition are
reported and compared. Four public RGB-D datasets, ac-
quired using a Kinect sensor, were used as benchmarks
in the experiment. These datasets are: MSR-Action3D



dataset [4], UTKinect-Action dataset [18], Florence3D-
Action dataset[19] and gaming G3D dataset [9]. In all ex-
periments, we used a ELM classifier with the covariance
descriptor. Before computing the descriptor, we first need to
project the 3D joints data into a common coordinate system
to make the joints’ coordinates. To achieve this, we select the
hip-center as the origin point, and use its coordinates as the
common basis. Then, we project and transform all the other
skeleton joints on the new center.
Evaluation Settings and Parameters : For MSR-Action3D
dataset, the protocol of cross subject test setting was used
similar to [4]. We further divided the dataset into subsets
AS1, AS2 and AS3 each consisting of 8 sub-actions. The
recognition task was performed on each subset separately and
we averaged the results. For the remaining data sets, we di-
vide each dataset into half of the subjects for training and the
rest are used for the testing task. We selected nine joints from
the body skeletal as shown in Figure 2. These joints were
used as an initial features input for descriptor. The number of
hidden neurons were selected by experiment to perform high
accuracies and our results are compared with state- of-the-
arts methods that rely only on the skeleton joints description.

7. RESULTS

Previous recognition results have already been reported in the
literature using the MSRAction3D dataset. Table 1 shows the
recognition rate per action subset along with the correspond-
ing results of methods that rely on skeleton joints. As we can
see, our method gives a good results. More specifically, our
method outperforms some of the state-of-the-art methods on
this dataset.

Similar to [12], we experimented with our approach on
a UTKinect-Action and Florence3D-Action datasets, and we

Table 1. Comparison of Recognition rates with the state-of-
the-art results on MSR action dataset

Histograms of 3D joints [18] 78.97
EigenJoints [20] 82.30
Joint angle similarities [22] 83.53
Covariance descriptors [3] 90.53
Random forests [12] 90.90
Joints as special Lie algebra [10 ] 92.46
Proposed approach 90.94

Table 2. Comparison of Recognition rates with the state-of-
the-art results using UTKinect dataset

Random forests [12] 87.90
Histograms of 3D joints [18] 90.92
Proposed approach 91.65

Table 3. Comparison of Recognition rates with the state-of-
the-art results, using Florence dataset

Multi-Part Bag-of-Poses [19] 82.00
Joints as special Lie algebra [10 ] 90.88
Proposed approach 87.50

Table 4. Comparison of Recognition rates with the state-of-
the-art results, using G3D dataset

Hybrid joints feature + adaboost [9] 71.04
Proposed approach 92.30

use the same setup in [9] on a G3D Action dataset.
Table 2 summarizes the recognition accuracies of our method
compared with current skeleton-based method using UTKinect
dataset. In this case the proposed approach gives the best re-
sults on these datasets. For example, the average accuracy
of our method outperforms the average accuracy of [18] and
[12] by 0.73% and 3.75%, respectively.

We further evaluate our method using Florence dataset,
the recognition rates compared with various methods were re-
ported in table 3, The proposed method gives the best over the
results of [19] by 5.5%.

The last experiment was carried out on G3D-Action
dataset. The average accuracy of our representation reported
in table 4 is 21.26%. This result is better than the average
accuracy of [9]. These results clearly demonstrate the per-
formance of our proposed method over a number of existing
skeletal joints-base approaches.

8. CONCLUSION

The problem of skeleton body representation was explicitly
modeled in this paper. We have presented an efficient ap-
proach for skeleton-based human action recognition. We
adopted the spherical harmonics and covariance technique.
We used the spatio-temporal spherical harmonics that charac-
terize the spherical angles of local joints over the entire action
sequence. We exploited the idea of covariance components
in order to capture the dynamic of the action and provide a
relevant descriptor with the a fixed length.

The experimental results tested on a various datasets
prove the effectiveness of the proposed method. Results
demonstrate that our method can be successfully used for
capturing temporal changes in action and achieve a higher
recognition rate. In future studies, we will enhance our
method for classifying and recognizing different other behav-
iors.
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