Connecting walks and connecting dart sequences for n-D combinatorial pyramids - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

Connecting walks and connecting dart sequences for n-D combinatorial pyramids

Luc Brun
  • Fonction : Auteur
  • PersonId : 936962

Résumé

Combinatorial maps define a general framework which allows to encode any subdivision of an n-D orientable quasi-manifold with or without boundaries. Combinatorial pyramids are defined as stacks of successively reduced combinatorial maps. Such pyramids provide a rich framework which allows to encode fine properties of objects (either shapes or partitions). Combinatorial pyramids have first been defined in 2D. This first work has later been extended to pyramids of n-D generalized combinatorial maps. Such pyramids allow to encode stacks of non orientable partitions but at the price of a twice bigger pyramid. These pyramids are also not designed to capture efficiently the properties connected with orientation. This work presents the design of pyramids of n-D combinatorial maps and important notions for their encoding and processing.
Fichier principal
Vignette du fichier
FoureyBrun.pdf (249.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01168215 , version 1 (30-09-2022)

Identifiants

  • HAL Id : hal-01168215 , version 1

Citer

Sébastien Fourey, Luc Brun. Connecting walks and connecting dart sequences for n-D combinatorial pyramids. Progress in Combinatorial Image Analysis, Proceedings of the 13th International Workshop on Combinatorial Image Analysis, Nov 2009, Cancun, Mexico. pp.109-122. ⟨hal-01168215⟩
86 Consultations
32 Téléchargements

Partager

More