A New PAC-Bayesian Perspective on Domain Adaptation - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2015

A New PAC-Bayesian Perspective on Domain Adaptation

Résumé

We study the issue of domain adaptation: we want to adapt a model from a source distribution to a target one. We focus on models expressed as a majority vote. Our main contribution is a novel theoretical analysis of the target risk that is formulated as an upper bound expressing a trade-off between only two terms: (i) the voters' joint errors on the source distribution, and (ii) the voters' disagreement on the target one; both easily estimable from samples. This new study is more precise than other analyses that usually rely on three terms (including a hardly controllable term). Moreover, we derive a PAC-Bayesian generalization bound, and specialize the result to linear classifiers to propose a learning algorithm.
Fichier principal
Vignette du fichier
main_dalc_rapport.pdf (1.16 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01163722 , version 1 (15-06-2015)
hal-01163722 , version 2 (21-09-2015)
hal-01163722 , version 3 (14-03-2016)

Identifiants

Citer

Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant. A New PAC-Bayesian Perspective on Domain Adaptation. [Research Report] Laboratoire Hubert Curien, Université Jean Monnet, Saint-Etienne; Département d'informatique et de génie logiciel, Université Laval (Québec). 2015. ⟨hal-01163722v2⟩
217 Consultations
125 Téléchargements

Altmetric

Partager

More