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Abstract

We study the issue of domain adaptation: we want to adapt a model from a source distribution
to a target one. We focus on models expressed as a majority vote. Our main contribution is a novel
theoretical analysis of the target risk that is formulated as an upper bound expressing a trade-off
between only two terms: (i) the voters’ joint errors on the source distribution, and (i3) the voters’
disagreement on the target one; both easily estimable from samples. This new study is more precise
than other analyses that usually rely on three terms (including a hardly controllable term). Moreover,
we derive a PAC-Bayesian generalization bound, and specialize the result to linear classifiers to propose
a learning algorithm.

1 Introduction

Machine learning practitioners are commonly exposed to the issue of domain adaptation'(Jiang, 2008;
Margolis, 2011): One usually learns a model from a corpus, i.e., a fixed yet unknown source distribution,
and then wants to apply it on a new corpus, i.e., a related but slightly different target distribution. There-
fore, domain adaptation is widely studied in a lot of application fields like computer vision (Patel et al.,
2015), natural language processing (Blitzer, 2007), etc. A simple example is the common spam filtering
problem, where a model needs to be adapted from one user mailbox to another receiving significantly
different emails.

Several approaches exist in the literature to address domain adaptation, but often with the same idea:
If we are able to apply a transformation in order to “move closer” the distributions, then we can learn
a model with the available labels. This process is generally performed by iterative procedures (Bruzzone
& Marconcini, 2010; Chen et al., 2011), and/or by reweighting the importance of labeled data (Huang
et al., 2006; Sugiyama et al., 2007; Cortes et al., 2010), and/or by minimizing a measure of divergence
between the distributions (Cortes & Mohri, 2014; Germain et al., 2013). The divergence-based approach
has especially been explored to derive generalization bounds for domain adaptation (Ben-David et al.,
2006; 2010; Mansour et al., 2009; Li & Bilmes, 2007; Zhang et al., 2012; Germain et al., 2013). Recently,
this issue has been studied through the PAC-Bayesian framework (Germain et al., 2013), which focuses
on learning weighted majority votes?, without any target label. Even if their result clearly opens the door
to tackle domain adaptation in a PAC-Bayesian fashion, it shares the same philosophy than the seminal
works of Ben-David et al. (2006; 2010) and Mansour et al. (2009): The error of the target model is upper-
bounded by a trade-off between the error of the model on the source distribution, the divergence between
the marginal distributions, and a non-estimable term related to the ability to adapt in the current space.
Note that Li & Bilmes (2007) proposed a PAC-Bayesian generalization bound for adaptation but they
considered target labels.

In this paper, we derive a novel domain adaptation bound that is expressed as a simpler trade-off:
The error of the target model is upper-bounded by the half of the voters’ disagreement on the target
distribution, and the voters’ joint errors on the source distribution weighted by a divergence between the

I'Domain adaptation is associated with transfer learning (Pan & Yang, 2010; Quionero-Candela et al., 2009).

2This setting is not too restrictive since many machine learning approaches can be seen as a majority vote learning. Think
for example to ensemble learning, or to support vector machines which output classifiers that can be interpreted as majority
votes.
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source and the target distributions. In other words, this leads to an original bound where the relation be-
tween the source and target distributions weights directly the trade-off as opposed to an additional term.
Another crucial point is that this relationship can be dealt as a constant when no labeled information
is available in the target distribution and thus seen as a hyperparameter to control the trade-off. Along
with this original domain adaptation bound, we provide a PAC-Bayesian generalization bound to justify
its empirical minimization. Finally, we specialize it to linear classifiers to design DALC, an algorithm
that clearly improves the performances of the PAC-Bayesian domain adaptation algorithm proposed by
Germain et al. (2013) on a popular dataset in the domain adaptation community.

The rest of the paper is organized as follows. Section 2 presents the PAC-Bayesian domain adaptation
setting, for which we recall the seminal results of Germain et al. (2013) in Section 3. Section 4 deals with
our new theoretical results leading to a new domain adaptation algorithm in Section 5. Before concluding,
we experiment this latter in Section 6.

2 PAC-Bayesian Domain Adaptation Setting and Notations

The PAC-Bayesian theory was first introduced by McAllester (1999). In this paper, we stand in the fol-
lowing domain adaptation PAC-Bayesian setting studied by Germain et al. (2013).

We tackle domain adaptation binary classification tasks from a d-dimensional input space X C R? to
the output space Y = {—1,1}. Our objective is to perform domain adaptation from a distribution S—the
source domain—to another but related distribution T—the target domain—on X xY. The associated
marginal distributions on X are respectively denoted by Sx and 7Tx. Given a distribution D, we denote
(D)™ the distribution of a m-sample constituted by m elements 4.i.d. from D. We consider the unsupervised
domain adaptation setting in which the algorithm is provided with a labeled source mg-sample S =
{(xs,y5) }i2 ~ (8)™+, and with an unlabeled target m;-sample T = {x;};*", ~ (Tx)™*. Note that all the
results presented in this paper are still true for (semi-)supervised domain adaptation, i.e., when we have
access to (some) target labels.

Let H be a set of voters h : X — Y. Given H, the ingredients of the PAC-Bayesian domain adaptation
approach are a prior distribution 7 on H, a pair of source-target learning samples (S,T) and a posterior
distribution p on H. The prior distribution = models an a priori belief—i.e., before observing (S, T)—of
the voters’ accuracy. Then, given the information provided by (S,T), the learner aims at finding/learning
a posterior distribution p leading to a p-weighted majority vote over H,

By = sien| B 10)].

with nice generalization guarantees on the target domain 7. In other words, we want to find the posterior
distribution p minimizing the true target risk of B, :

Rr(B) = E_I[B,()#1].

where I[a] =1 if a is true, and 0 otherwise.

However, in usual PAC-Bayesian analyses (McAllester, 1999; Langford & Shawe-Taylor, 2002; Catoni,
2007), one does not directly focus on the risk of the deterministic classifier B,, but studies the risk of the
closely related stochastic Gibbs classifier G,. Given a domain D, the classifier G, predicts the label of an
example x by first drawing a voter h from H according to the posterior p, and then returning h(x). Thus,
the risk of G, on a domain D (also called the Gibbs risk) corresponds to the expectation of the risks over
‘H according to p:

Ro(G,) = B B I[h(x)#9). (1)
It is well-known in the PAC-Bayesian literature that the deterministic vote B, and the stochastic classifier
G, are related by:
RD(BP) < 2RD(GP) :

Furthermore, Lacasse et al. (2006) have exhibited that one can obtain a tighter bound on Rp(B,) by
studying the expected disagreement dpy (p) and the expected joint error ep(p) of the pairs of voters,
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respectively defined as:

do(p) = B B Ih(x)#H(). (2)
and ep(p) = B B Ih(x) Ay IH(x) £y, 3)

(x,9)~D (h,h')~p?

with p?(h, 1) = p(h) x p(h'). Given a m-sample S ~ (D)™, we use ﬁS(GP), ds(p) and €5(p) to denote
the empirical estimation of the Gibbs risk, the disagreement and the joint error respectively.

Finally, note that, given a domain D on X x Y, the starting point of our work is the following simple
observation:

Voon H, Ro(G,)= 5 B E (LX) # 9]+ 1 (x)#y])

(xy)~D (h;h/)~p?

VB B (1000 # WL+ 2 X T # ] T (x) # 9] )

= 5 dox(p) +en(p). (4)

N~ N~ N

3 The Previous PAC-Bayesian Domain Adaptation Analysis

Inspired by the seminal domain adaptation analyses of Ben-David et al. (2006; 2010) and Mansour et al.
(2009), a PAC-Bayesian domain adaptation bound was derived by Germain et al. (2013). This bound is
based on a divergence between distributions—called the domain disagreement (see Equation (5))—suitable
for the PAC-Bayesian analysis, i.e., for the stochastic Gibbs classifier. Their main result is stated in the
following theorem.

Theorem 1. Let H be a set of voters. For any domains S and T over X XY, we have:
Vp on H’ RT(GP) < RS(GP) + diSp(SXv TX) + >\(,0, pT*) 5

where dis,(Sx, Tx) is the domain disagreement between the marginals Sx and Tx:

disp(SX, Tx) =

B (LB, 1000 £ 0 6a] - B Tihex) £ 100 )|

(h,h")~p2 x~Sx x~Tx

= ‘de (p) - de (p) ) (5)

ad Npp) =Re(Gpr)+ B B (B TG0 £ )+ B 10 #00])

h~p h'~pr*
with p;* = argmin,, R7(G),) the best posterior distribution on the target domain.

This bound reflects the usual philosophy in domain adaptation (Ben-David et al., 2006; 2010; Man-
sour et al., 2009). Indeed, assuming that the last term A(p, p+*)—which is not estimable from unlabeled
target samples—is low, a favorable situation for domain adaptation arises when the deviation between the
domains with respect to dis,(Sx, 7x) is small and the accuracy on the source domain Rs(G,) is good.

Along with the above theorem, Germain et al. (2013) provide the following PAC-Bayesian generaliza-
tion bound (based on the PAC-Bayesian analysis of non-adaptative learning of Catoni (2007)).

Theorem 2. For any domains S and T over X X Y, any set of voters H, any prior distribution ™ over
H, any 6 € (0,1], any real numbers a > 0 and ¢ > 0, with a probability at least 1 — § over the choice of
S X T~ (8 xTx)™, we have for every posterior distribution p on H :

d 2(1’) <KL(p||7T) +In2
a

Rr(G,) < C/ﬁS(GP)JFa/(Ti—S\p(S»T)JF <CJr m > +Apspr") +a' =1,

where f{S(GP), respectively cTis\p(S, T), is the empirical estimation of the source risk, respectively of the
domain disagreement between Sx and Tx, and ¢’ = =%=, and a’ = %, and KL(p||7) is the Kullback-
Leibler divergence between p and 7.

Technical Report V 2 3
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This result justifies the learning algorithm PBDA (Germain et al., 2013). Given a source sample
S = {(x;,y:;)}i and a target sample T = {(x;)};~%, the goal of PBDA is to minimize the bound of
Theorem 2. However, the term A(p, pr*) does not appear in the optimization process of PBDA, even if it
relies on p. Germain et al. (2013) argued that the value of A(p, p+*) should be negligible (uniformly for all
p) when adaptation to the target distribution is achievable®. Therefore, given the hyperparamters A > 0
and C' > 0, the algorithm PBDA minimizes the trade-off

CRs(G,) + Adis, (S, T) + KL(p|7) (6)

specialized to linear classifiers, as detailed below.
Let H be a set of linear classifiers. Each hys € H is defined by a weight vector w’ € R%:

i (x) = sign (W' X) |

where - denotes the dot product. Building on previous PAC-Bayesian analyses for linear classifiers
(Langford & Shawe-Taylor, 2002; Ambroladze et al., 2006; Parrado-Herndndez et al., 2012; Germain et al.,
2009a), Germain et al. (2013) consider that prior and posterior distributions are Gaussian distributions.
Indeed, if the posterior distribution py,, respectively the prior distribution g, is defined as a spherical
Gaussian with identity covariance matrix centered on the vector w, respectively 0, then we have:

1 d 1, 2
Vhw €H, pwlhw) = (ﬁ) e~ 2w —wl ’

1 d 1 /2
and Wo(hw/) = <) 672HW I ,

V2T
and the KL-divergence between py, and mg simply is
1 2
KL(pwlimo) = 3l

Moreover, it is easy to verify that the prediction of the majority vote B,, corresponds to the one of the
linear classifier A :

VxeX, VweH, he(x) = sign[ E hw/(x)}

hw’ ~Pw
= By, (x).
Finally, by rewriting Equation (6) in the case of linear classifiers, the algorithm PBDA consists in minimizing

the following function of w :
= W - X; = W X; il W X;
03 e (w7 ) + 4] l‘b () - ()
i=1 i=1 i=1

1
+ 5wl (7)

where

1
Doyx(x) = max{q)(m), 2—\/‘/;—”},

Dyis(x) = 2xP(z)xD(—x),

and ®(x) = %{1Erf<\2>} ,

x
with Erf(x) = % / exp(—t?)dt the Gauss error function.
0

As pointed out by Germain et al. (2013), the kernel trick applies to Equation (7). That is, given a
kernel k : R x R? — R, one can express a linear classifier in a RKHS by a dual weight vector a€R"s+m:

hw(:) = sign lzs a;k(x;, ) + Zai+msk(xi, )] . (8)

3This strong assumption cannot be verified because p7* is unknown. We claim that this is a major weakness of the work
of Germain et al. (2013) that our new approach overcomes.
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4 A New PAC-Bayesian Domain Adaptation Bound

We now derive a simpler and more precise analysis of PAC-Bayesian domain adaptation. Inspired by the
idea of Lacasse et al. (2006), we first decompose the risk R7(G),) into the expected disagreement dr (p)
and the expected joint error er(p), as exhibited by Equation (4). In the present domain adaptation
context, we are able to estimate the quantity dr; (p) using a target sample, since the voters’ disagreement
does not rely on label. However, the expected joint error can only be estimated on the labeled source
sample. Theorem 3 below presents our domain adaptation bound and links the target joint error er(p)
with the source one eg(p) by weighting the latter by a divergence measure between the two domains. This
domain divergence 5,(7T||S) is parametrized by a real value ¢ > 0:

Bu(TIIS) = [<x,£~3 @((;(;)H

In particular, we denote the limit case ¢ — oo by:

9)

BuelTIS) = sup (L)

(x,y)EXXY

It is worth noting that considering some ¢ values allows recovering well-known divergences. For in-
stance, choosing ¢ = 2 relates our result to the y2-distance between the two domains, as

Ba(TIS) = VXA(TIS) + 1.

Moreover, we can relate 8,(7|S) to the Rényi divergence®, which has already led to generalization bounds
in the specific context of importance weighting by Cortes et al. (2010).

The divergence measure 34(71|S) between the two domains is the only term that cannot be estimated
from samples (since we do not consider target labels) in the statement of Theorem 3 below.

Theorem 3. Let H be a hypothesis space, let S and T respectively be the source and the target domains
on XxY. Let ¢ > 0 be a constant. We have:

1

Vo onH, Rr(G,) < Ldr(o)+6(TIS) x [esto)]

where dry (p), es(p) and By(T||S) are respectively defined by Equations (2), (3) and (9).

Proof. Starting from Equation (4). we have, for every p on H,

Rr(G,) = ydno)+ BB ING) A5 Ik 9]
o 1 T(x,y) /
— san+ B (T8 B 160 A0 16 #5]) (10)

P

< g+ | B (G D) | B W B G100 £ 0l The) 2 )

Last line is due to Holder inequality, with p such that % = 1—%. Finally, we remove the exponent from
expression (I[h/(x) # y]I[h(x) # y])P without affecting its value, which is either 1 or 0. O

It is instructive to compare Theorem 3 statement with the previous PAC-Bayesian domain adaptation
bound of Theorem 1. In our bound, the only non-estimable term is the domain divergence S4(7|S),
and contrary to the non-controllable term A(p, p7*) of Theorem 1, it does not depend on the posterior
distribution p learned: For every p on H, B,(T]|S) is a constant measuring the relation between the
two domains. Moreover, this latter domain divergence is not an additive term but a multiplicative one
(as opposed to dis,(Sx,Tx) + A(p, p+*) in Theorem 1). This is a contribution of our analysis, since
B4(T|S) can be considered as a hyperparameter that allows tuning the trade-off between the target
voters’ disagreement and the source joint error®. Consequently, we do not need to make assumptions on

g=1
4For every q > 0, we can easily prove that: Bq(T||S) = dg(T||S) @ , where dg(T||S) = 2Pa(TIIS) with Dy (T||S) the
Rényi divergence between T and S.
5Experiments of Section 6 show that this hyperparameter can be successfully selected by reverse validation.
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its value, while usual domain adaptation approaches require that such non-estimable terms are negligible
(even in non-PAC-Bayesian bounds, similar additional terms also appear (Ben-David et al., 2006; 2010;
Mansour et al., 2009)).

Another very attractive point of Theorem 3 comes from the parameter ¢, that allows considering
different relationships between 3,(7|S) and es(p). In particular, the case ¢ — oo exhibits an interesting
analysis: Whenever the two domains are equal (i.e., S = T) then S (7|S) = 1, and the bound becomes
an equality. Therefore, when adaptation is not necessary, our analysis is still sound:

ponH, Rr(G,) < 5dn(p)tesp) = 5dsc(p) +esp) = Rs(@,) = Ry(G,).

Furthermore, under the covariate-shift (Shimodaira, 2000) assumption, that is the domains only diverge
in their marginals, (i.e., Ty x(y) = Sy|x(¥)), one may estimate the value of 8,(7x|[|Sx ) using unsupervised
density estimation methods. Interestingly, from Line (10), we also can obtain the following equality:

Tx (x) )
S BTG £ T A1) ()

which suggests a way to correct the shift between the two distributions by reweighting the labeled source
information captured by the joint error. Note that we consider this as future work studies.

1
onH, Rr(G,) = pdnlo+ E_(

PAC-Bayesian Generalization Guarantees

In order to justify the empirical minimization of our bound of Theorem 3, we first provide here PAC-
Bayesian generalization guarantees for dry (p) and es(p). These results are presented as a corollary
of Theorem 4 below, that generalizes the PAC-Bayesian theorem of Catoni (2007) (more precisely, the
simplified form of Germain et al. (2009b)), to arbitrary loss functions. Indeed, Theorem 4, with ¢(h,x,y) =
I[h(x) # y] and Equation (1), gives the usual bound on the Gibbs risk.

Theorem 4. For any domain D over X XY, any set of voters H, any prior distribution m over H, any
function £ : H x X x Y — [0,1], any real number ¢ > 0, with a probability at least 1—§ over the choice of
S ={(x:,y:)}"1 ~ (D)™, we have for every posterior distribution p on H :

1 - KL +1Ind
BB fhxy) € r | S0 B by ¢ AT
(x,y)~D h~p l—e¢|m = h~p m
Proof. We use the following shorthand notation:
1
Lph)= E ‘¢h d Lg( — (h,
D( ) (,y)~D ( ax7y)a an S m Z X y

x,y)€

Consider any convex function A : [0,1]x[0,1] — R. Applying consecutively Jensen’s Inequality and the
Change of measure inequality (see Seldin & Tishby (2010, Lemma 4) and McAllester (2013, Equation
(20))), we obtain:

VponH : mxA <hE Ls(h), E
~p

~p

@(h)) < B mxA(Ls(h), Lo(h))

h~p
< KL(p||7) +In {XW(S)} ;

with
Xo(S)= B emx<AELsh), Lo(h),

h~m
Then, Markov’s Inequality gives
Pr (Xa(S)<} B Xe(8)) < 1-6
JLr (X9 =5 E Xx(5)) < ;
and

X (S/) — E E e’rnXA([,S/(h),[,D(h))
sipm T SIAD™ e
mXxA(Lgr(h), Lp(h))

E e
h~om S/~D™

£ ) (:J%(h))k(l—ﬁp( kel o), (12)
=0

IN

h~m
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where the last inequality is due to Maurer (2004, Lemma 3) (we have an equality when the output of ¢ is
in {0,1}). As shown in Germain et al. (2009a, Corollary 2.2), by fixing

A(gq,p) = —exq—In[l—p (1—e~9)],
Line 12 becomes equal to 1, and then . EDm X,(S") <1. Hence,

KL Ini
Py <vp onH: —cE Ls(h)—l[l— B Lp(h) (1—e)] < (”“T”né) < 1-5.
S~Dm h~p h~p

m
By reorganizing the terms, we have, with probability 1—¢§ over the choice of S € D™,

_ KL(p||m) +1n3;)] .

Vpon H : hE Lp(h) <
~p

S s {1 — exp (—ch]i]p Ls(h)

The final result is obtained by using the inequality 1—exp(—z) < z. O

We now extend this result to the expected disagreement and the expected joint error. PAC-Bayesian
bounds on these quantities already appeared in Lacasse et al. (2006), but under different forms. In the
statement of Corollary 1 below, we are especially interested in the possibility of controlling the trade-
off—between the empirical estimate computed on the samples and the complexity term captured by
KL(pl||m)—with the help of parameters a and c.

Corollary 1. For any domains S and T over X XY, any set of voters H, any prior distribution ™ over
H, any 6 € (0,1], any real numbers a > 0 and ¢ > 0, we have:

~ ¢ 2KL(p|/7) +1n i
P v d < dd — 9 1-94
LB ( ponH. drlp) < ¢dr(p)+ ST |
N " 2KL +Ini
and SNE?I)'MS (Vp onH, es(p) < d'es(p)+ ZW) > 1-9.

where ﬁT(p), respectively €s(p), is the empirical estimation of the target voters’ disagreement, respectively

. . /o c ! __ a
of source joint error, and ¢’ = ==, and o’ = == .

Proof. Given 7 and p over H, we consider a new prior 72 and a new posterior p?, both over #?2, such that:
Vhij = (h“h]) € HQ, 7T2(hij) = W(hi)ﬂ'(hj) and p2(hij) = p(hl)p(hj) ThUS, KL(p2H7T2) = 2KL(p2||7T2)
(see (Germain et al., 2013; Lacasse et al., 2006)). Let us define two new loss functions for a “paired voter”
hij € H?:

Ca(hij,x,y) =T[hi(x) # h;(x)] , and Le(hij,x,y) = L[hi(x) # y] xI[h;(x) # y] .

Then, the bound on d7y (p) is obtained from Theorem 4 with ¢ := ¢4, and Equation (2). The bound on
es(p) is similarly obtained with ¢ := £, and using Equation (3). O

For algorithmic reasons, we are going to deal with our bound of Theorem 3 when ¢ — oo. Thanks to
Theorem 1, minimizing this bound is equivalent to optimize the following generalization bound defined
with respect to the empirical estimates of the target disagreement and the source joint error.

Theorem 5. For any domains S and T over X X Y, any set of voters H, any prior distribution m over

H, any § € (0,1], any real numbers a > 0 and ¢ > 0, with a probability at least 1 — & over the choice of
SxT ~ (8 xTx)™, we have for every posterior distribution p on H :

2

d v ) 2KL(p||7) +1In 5

1. _
R7(G,) <¢ 3 dr(p) +b'€es(p) + (C i

m )
where ﬁT(p), respectively €s(p), is the empirical estimation of the target voters’ disagreement, respectively

of source joint error, and b = oo (T||S), and ' = b7, and ' = —=.

Proof. The result is obtained by bounding separately dry (p) and es(p) using Corollary 1 (with probability
1—% each), and combining the two upper bounds according to Theorem 3. O

From an optimization perspective, the problem suggested by the bound of Theorem 5 is much more con-
venient to minimize than the bound of Theorem 2. The former is smoother than the latter that contains an
absolute value required by the domain disagreement dis, (.S, T"). Moreover, recall that Germain et al. (2013)
choose to ignore the non-constant term A(p, p+*) of Theorem 2. In our case, such compromise is not
mandatory to apply the theoretical result to real domain adaptation problems.

Technical Report V 2 7
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Figure 1: Graphical representation of the loss functions given by the specialization to linear classifiers.

5 From the Bound to an Algorithm Specialized to Linear Clas-
sifiers

As observed in the previous section, 3,(7|S) is a constant, whatever the value of g. Then it can be consid-
ered as a hyperparameter to tune. According to Theorem 5, given C > 0 and B > 0 the hyperparameters
of the algorithm, we propose to minimize the following trade-off:

Cdr(p) + B@s(p) + KL(p||r), (13)

where B models the compromise between the target and the source domains. Contrary to the trade-off
optimized by PBDA (Germain et al., 2013) of Equation (6), we do not neglect any term of our bound.

We now follow the setting presented in Section 3 for specializing Equation (13) to linear classifiers.
Therefore, we consider H as a set of linear classifiers in a d-dimensional space, and we use Gaussian
posterior py and prior mo with identity covariance matrix (respectively centered on vectors w and 0).
With ®g4is(x) = 2xP(z)xP(—x), Germain et al. (2013) showed :

WX
Vpw on H, drx (pW) - x;E')Tx P (”XH) .

Following a similar approach, with ®e,(z) = [<I>(ac)f, we obtain:

Vpow on H, es(pw) = E E I[h(x I[h (x
: sw) = (BB TG0 AT £

WE B TG £3 B L) £

W - X
E @ r | Y ) .
(e)~s ( [l

Figure 1 illustrates the behavior of the loss functions ®, ®.., and Pg;s. Finally, by specializing Equa-
tion (13) to linear classifiers, our new algorithm consists in minimizing

o =exed () o () o e ()] +3m 00

i=1

We call this algorithm DALC for Domain Adaptation of Linear Classifiers.

Similarly to Germain et al. (2013), we can apply the kernel trick to DALC, using the dual vector a of
Equation (8). Even though the objective function is highly non-convex, we achieved good empirical results
by minimizing the “kernelized” version of Equation (14) by gradient descent, with a uniform weight vector
as a starting point. More details are given in the supplementary material.

Let S={(xi,y:)}imsy, T={x;};*4y and M = mg + m;. We will denote

K2

X; if # <ms (source examples)
X =
# X4 _m, oOtherwise.  (target examples)
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Target rotation of 10 degrees Target rotation of 30 degrees Target rotation of 50 degrees
7

Figure 2: Decision boundaries of DALC on the igtertwining moons toy problem, for fixed parameters
B=C=1, and a RBF kernel k(x,x’) = e I**II". The target points are black. The positive, resp.
negative, source points are red, resp. green.

The kernel trick allows us to work with dual weight vector @ € RM that is a linear classifier in an
augmented space. Given a kernel k : R x R? — R, we have

hw(:) = sign [Z aik(xi,-)l .
i=1

Let us denote K the kernel matrix of size M x M such as K; ; = k(x;,X;).
In that case, the objective function G(w)—Equation (14)—can be rewritten in term of the vector

a = (0(1,042, .. .OéM)

- M M
Glay=ox 3 o 2l ) o [ Xim il
Kii K

1=mg

as

M M

' 2
. >t %’Ki.jﬂ 1
+Bx o[y, Z= L) = o K (15)

i=1j=1

6 Experimental Results

Firstly, Figure 2 illustrates the behavior of the decision boundary of our algorithm DALC on an inter-
twining moons toy problem®, where each moon corresponds to a label. The target domain, for which
we have no label, is a rotation of the source domain. The figure shows clearly that DALC succeeds to
adapt to the target domain, even for a rotation angle of 50°. We see that DALC does not rely on the
restrictive covariate-shift assumption, as some source examples are misclassified. This behavior illustrates
the trade-off proposed by DALC in action, by conceding some errors on the source sample to improve the
disagreement on the target sample.

Secondly, we evaluate DALC” on the classical Amazon.com Reviews benchmark (Blitzer et al., 2006)
according to the setting used by Chen et al. (2011) and Germain et al. (2013). This dataset contains
reviews of four types of products (books, DVDs, electronics, and kitchen appliances) described with about
100,000 attributes. Originally, the reviews were labeled with a rating from 1 to 5. Chen et al. (2011)
proposed a simplified binary setting by regrouping ratings in two classes (products rated lower than 3 and
products rated higher than 4). Moreover, they reduced the dimensionality to about 40, 000 by only keeping
the features appearing at least ten times for a given domain adaptation task. Finally, the data are pre-
processed with a tf-idf re-weighting. A domain corresponds to a kind of product. Therefore, we perform
twelve domain adaptation tasks. For instance, “books—DVD’s” is the task for which the source domain

6We generate each pair of moons with the make moons function provided in scikit-learn (Pedregosa et al., 2011).

7 In these experiments, we minimize the objective function (Equation (15)) using a Broyden-Fletcher-Goldfarb-Shanno
method (BFGS) implemented in the scipy python library (Jones et al., 2001-). We initialize the optimization procedure at
aizi for all i € {1,...,Mm}.
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Table 1: Error rates on Amazon dataset. Best risks appear in bold and seconds are in italic.

| svmM© | pasvm®©YV copa™“Y ppARCY | paLc OV |
books—DVDs 0.179 0.193 0.181 0.183 0.178
books—electronics 0.290 0.226 0.232 0.263 0.212
books—kitchen 0.251 0.179 0.215 0.229 0.194
DVDs—books 0.203 0.202 0.217 0.197 0.186
DVDs—electronics 0.269 0.186 0.214 0.241 0.245
DVDs—kitchen 0.232 0.183 0.181 0.186 0.175
electronics—books 0.287 0.305 0.275 0.232 0.240
electronics—DVDs 0.267 0.214 0.239 0.221 0.256
electronics—kitchen 0.129 0.149 0.134 0.141 0.123
kitchen—books 0.267 0.259 0.247 0.247 0.236
kitchen—DVDs 0.253 0.198 0.238 0.233 0.225
kitchen—electronics 0.149 0.157 0.153 0.129 0.151

| Average | 0.231 | 0.204 0.210 0.208 | 0.200 |

is “books” and the target one is “DVDs”. We compare DALC with the classical non-adaptative algorithm
SVM (trained only on the source sample), the adaptative algorithm DASVM (Bruzzone & Marconcini, 2010),
the adaptative co-training CODA (Chen et al., 2011), and the PAC-Bayesian domain adaptation algorithm
PBDA (Germain et al., 2013) of Equation (7). Note that, in Germain et al. (2013), DASVM has shown
the best results on average on this Amazon.com Reviews dataset. Each parameter is selected with a grid
search thanks to a usual cross-validation (“V') on the source sample for svM, and thanks to a reverse
validation procedure® (V) for coDpA, DASVM, PBDA, and DALC. The algorithms use a linear kernel and
consider 2,000 labeled source examples and 2,000 unlabeled target examples. Table 1 reports the error
rates of all the methods evaluated on the same separate target test sets proposed by Chen et al. (2011).

Above all, we observe that the adaptative approaches show the best result, implying that tackling
this problem with a domain adaptation method is reasonable. Then, our new method DALC is the best
algorithm overall on this task. Except for the two adaptative tasks between “electronics” and “DVDs”,
DALC is either the best one (six times), or the second one (four times). Moreover, DALC clearly increases
the performance over the previous PAC-Bayesian algorithm (PBDA), which confirms that our novel bound
improves the analysis done by Germain et al. (2013).

7 Conclusion

In this paper, we derive a novel and original analysis of domain adaptation in the context of majority
vote learning. This analysis relies on an upper bound over the target risk, expressed as a simple trade-off
between the voters’ disagreement measured on the target domain and the voters’ joint errors measured on
the source one. A crucial point is that the divergence between the two domains is not an additive term (as
in many domain adaptation bounds), but is a factor that controls the trade-off given by our bound. To
the best of our knowledge, this latter point is a major contribution in domain adaptation, and thus gives a
new point of view to tackle it. Moreover, our bound has the clear advantage to lead to a non-degenerated
analysis when the two domains are the same. This analysis, combining with a PAC-Bayesian generaliza-
tion bound, leads to a new domain adaptation algorithm for linear classifiers (named DALC). We provide
an experiment on a popular domain adaptation dataset where we showed that our new algorithm can lead
to better results.

As future work, we aim at extending our approach to the case in which some target labels are available
to accurately estimate the divergence (3,(7|S). Besides, we would like to explore in detail covariate-
shift (Shimodaira, 2000), when we suppose that the two domains only differ on their marginals according
to the input space. Actually, we believe that decomposing the risk as a trade-off between target voters’
disagreement and the weighted source joint errors gives another point of view of this issue which may
improve basic methods based only on a reweighting of the source risk. A first step towards this goal is

8For more details on the reverse validation procedure, the reader can refer to (Bruzzone & Marconcini, 2010; Zhong et al.,
2010). For obtaining the DALCTCY results of Table 1, the reverse validation procedure searches on a 20 x 20 parameter grid
for a C' between 0.01 and 10 and a parameter B between 1.0 and 108, both on a logarithm scale. The results of the other
algorithms are reported from Germain et al. (2013).
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to study the relationships of our bound with the work of Cortes et al. (2010) on importance weighting
algorithms. Indeed, they derived bounds depending on the Rényi divergence between S and T which can
be related to our divergence B4(7|S). A second approach will be to take advantage of Equation (11)
which is not a bound but an equality that directly relates the target risk to the disagreement on the
unlabeled data and the joint error on the labeled examples.
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