Non-isothermal droplet spreading/dewetting and its reversal - Archive ouverte HAL Access content directly
Journal Articles Journal of Fluid Mechanics Year : 2015

Non-isothermal droplet spreading/dewetting and its reversal


Axisymmetric non-isothermal spreading/dewetting of droplets on a substrate is studied , wherein the surface tension is a function of temperature, resulting in Marangoni stresses. A lubrication theory is first extended to determine the drop shape for spread-ing/dewetting limited by slip. It is demonstrated that an apparent angle inferred from a fitted spherical cap shape does not relate to the contact-line speed as it would under isothermal conditions. Also, a power law for the thermocapillary spreading rate versus time is derived. Results obtained with direct numerical simulations (DNSs), using a slip length down to O(10 −4) times the drop diameter, confirm predictions from lubrication theory. The DNS results further show that the behaviour predicted by the lubrication theory that a cold wall promotes spreading, and a hot wall promotes dewetting, is reversed at sufficiently large contact angles and/or viscosity of the surrounding fluid. This behaviour is summarized in a phase diagram, and a simple model that supports this finding, is presented. Although the key results are found to be robust when accounting for heat conduction in the substrate, a critical thickness of the substrate is identified above which wall conduction significantly modifies wetting behaviour.
Fichier principal
Vignette du fichier
SUI_JFM_2015.pdf (1.77 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01163707 , version 1 (15-06-2015)


  • HAL Id : hal-01163707 , version 1


Yi Sui, Peter D. M. Spelt. Non-isothermal droplet spreading/dewetting and its reversal. Journal of Fluid Mechanics, 2015, in press. ⟨hal-01163707⟩
156 View
291 Download


Gmail Facebook X LinkedIn More