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3Département Mécanique, Université Claude Bernard Lyon 1, France

(Received 4 June 2015)

Axisymmetric non-isothermal spreading/dewetting of droplets on a substrate is stud-
ied, wherein the surface tension is a function of temperature, resulting in Marangoni
stresses. A lubrication theory is first extended to determine the drop shape for spread-
ing/dewetting limited by slip. It is demonstrated that an apparent angle inferred from
a fitted spherical cap shape does not relate to the contact-line speed as it would under
isothermal conditions. Also, a power law for the thermocapillary spreading rate versus
time is derived. Results obtained with direct numerical simulations (DNSs), using a slip
length down to O(10−4) times the drop diameter, confirm predictions from lubrication
theory. The DNS results further show that the behaviour predicted by the lubrication
theory that a cold wall promotes spreading, and a hot wall promotes dewetting, is re-
versed at sufficiently large contact angles and/or viscosity of the surrounding fluid. This
behaviour is summarized in a phase diagram, and a simple model that supports this
finding, is presented. Although the key results are found to be robust when accounting
for heat conduction in the substrate, a critical thickness of the substrate is identified
above which wall conduction significantly modifies wetting behaviour.

Key words: Thermocapillarity, non-isothermal spreading, moving contact lines.

1. Introduction and problem statement

Wetting control, especially the dislodgement of small droplets from solid surfaces (or
the prevention thereof), arises in various technologies, from droplet actuation to wiper-
less windscreens and oil/gas transport (for general reviews of wetting see de Gennes et
al. (2004); Bonn et al. (2009); Snoeijer & Andreotti (2013)). Various approaches have
been shown to profoundly affect wetting, such as using surfaces of complex topography,
vibrating surfaces and thermal effects. We investigate here droplet spreading/dewetting
under non-isothermal conditions, partly with these applications in mind, and partly be-
cause assumed isothermal conditions are often not achieved in real systems in the first
place.
Non-isothermal spreading/dewetting has been well studied for thin droplets using lu-

brication theory, following pioneering work by Greenspan (1978) on the corresponding
isothermal problem. A general evolution equation for the drop height was derived and
solved by Ehrhard & Davis (1991) in the limit of vanishing capillary number, wherein
at any time, the entire drop exhibits a quasi-static shape that is affected by Marangoni
stresses. In their study, a relation between an apparent angle and contact-line speed is
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used that limits the spreading/dewetting. They established that spreading is promoted
on a cold surface, and that dewetting is promoted on a hot surface, if the surface tension
coefficient decreases when the temperature is increased. Subsequent work has studied
notably non-uniformly heated substrates (e.g., Bostwick 2013).
The first aim here is to study non-isothermal spreading/dewetting with effects of finite

capillary number (viscous bending), wherein spreading is limited by the conditions in the
immediate vicinity of the contact line. The main difficulty here is that the Navier-Stokes
equations for Newtonian fluids, with a no-slip condition, generally lead to a non-integrable
singularity in wall shear stress at a moving contact line (Moffatt 1964; Huh & Scriven
1971). Various contact-line models have been proposed (e.g., Bonn et al. 2009; Snoeijer &
Andreotti 2013) that are all challenging to implement in computational models, usually
because these introduce a length scale that would have to be very small to represent
real systems (Sui et al. 2014). Some tests indicate similar wetting behaviour by various
models (e.g., (Sibley et al. 2015a)). We adopt a slip model here, as this allows us to
compare results with advanced theoretical predictions for isothermal droplet spreading
(Hocking & Rivers 1982) and prior work on non-isothermal spreading (Ehrhard & Davis
1991). Molecular dynamics simulations do suggest that slip plays a role in contact-line
motion (Ren & E 2007). Various slip models have actually been proposed; we use herein
the conventional version wherein the tangential component of velocity at the substrate
is proportional to the shear rate, as stated explicitly in Sec. 2..
In Sec. 3 we use lubrication theory to establish the interface shape including an appar-

ent angle, for a constant actual (not apparent) contact angle. Although such an approach
has been pursued previously, this appears to be true only for isothermal systems, the
analysis for non-isothermal systems usually being studied with lubrication theory in the
limit of vanishing capillary number wherein the contact angle is a prescribed function
of contact-line speed (for comparisons between these approaches under isothermal con-
ditions, see Hocking (1992) and Davis (2000)). In effect, the analysis in Sec. 3 merges
those of Ehrhard & Davis (1991) and Hocking (1983). The present approach is expected
to be valid at sufficiently small slip length values, and is not valid in the limit of the
microscopic contact angle θw → 0 at a fixed slip length (Hocking 1992). Contrary to
prior work, we shall not assume the limit of a small Biot number (defined below). It
will be shown in subsequent sections that this allows a comparison with results of direct
numerical simulations (DNSs).
In subsequent sections we use DNS of the full Navier-Stokes equations, to go beyond

the lubrication limit for thin droplets. For this purpose we extend our computational
method (Sui & Spelt 2013a) to non-isothermal spreading/dewetting problems. The main
objective there is to establish the role of hot and cold surfaces in promoting or retarding
spreading for large contact angles. We also include an investigation of the effect of thermal
conduction in the solid substrate.

2. Problem definition

In the DNS we consider axisymmetric spreading and dewetting of a droplet with ini-
tial temperature T∞ equal to that of the surrounding fluid on a flat solid surface with
homogeneous surface properties and a constant temperature Tw (illustrated in Fig. 1);
at the end of this paper, we also consider the effect of heat conduction in the substrate
with a finite thickness. Gravity is not considered in the present work, and the fluids are
assumed to be Newtonian with constant bulk properties. The initial shape of the drop
is chosen to be a spherical cap with a contact line radius R and a contact angle θini
which equals the microscopic equilibrium contact angle θw. The droplet therefore only
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Figure 1. Problem definition sketch of an axisymmetric droplet on a solid substrate. The contact
angle imposed is θw; the contact angle seen on the macroscale used in this figure is equal to θm
which will differ from θw is interface curvature is large near the contact line. The notation R(z)
is introduced for use in Sec. 6.1.

spreads/dewets due to the temperature difference between the droplet and the substrate.
At late times, the temperature approaches Tw throughout, and the droplet will return
to its initial shape. We use the DNSs here to study wetting/dewetting in this first stage
(determining which of these occurs when), which is dominated by thermal effects.
The dependency of the surface tension coefficient on the local temperature is taken to

be of the form

σ(T ) = σw − γ(T − Tw), (2.1)

where σw represents the surface tension coefficient at Tw; γ is a constant that is taken to
be positive herein. The surface tension coefficient at T∞ is denoted by σ∞. The Navier-
Stokes equations for incompressible fluids are used, supplemented by an energy equation.
Cylindrical coordinates (0 6 r 6 Lr, 0 6 z 6 Lz) are employed. At the solid wall

(z = 0) a slip boundary condition, ur = λ̂∂ur/∂z, is imposed, with λ̂ the slip length, and
T = Tw. Symmetry boundary conditions are imposed at r = 0. In the DNSs, the flow
and temperature are resolved in both fluids, using continuity of velocity, tangential stress
and energy flux, and the jump condition for normal stress at the interface. Along the
boundaries of the computational domain other than z = 0 and r = 0, zero normal gradient
boundary conditions are used for velocity and temperature. In the lubrication theory,
the flow and temperature in the fluid surrounding the droplet are not resolved, but their
effects are modelled by assuming the gas/liquid interface to be shear-free, and through
a thermal boundary condition at the interface of the form −k1∂T/∂n = k2(T − T∞)/δ,
with δ a length scale representative of the thermal boundary thickness above the drop;
the indices 1 and 2 represent liquid and gas properties, respectively.
The results are presented in dimensionless form usingR as the length scale, µ1R/(σwθ

3
w)

as the time scale, and Tw−T∞ as the temperature scale, and the droplet as the reference
for fluid properties. This introduces the dimensionless groups listed in Table 1.

3. Lubrication theory

Lubrication theories have been well developed to model the dynamics of a wide range
of thin films (see Craster & Matar (2009) for a review). The pertinent evolution equation
for the dimensionless height of a thin droplet reads (Ehrhard & Davis 1991)

ht +
1

r
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3
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]
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r

)
r

+
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1 +Bh2

[
h2
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]
rhr

}
r

= 0. (3.1)
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viscosity ratio rv = µ2/µ1

density ratio rd = ρ2/ρ1
specific heat ratio rc = cp2/cp1
thermal conductivity ratio rk = k2/k1
capillary number at wall temperature Caw

cl = µ1U/σw

capillary number at far-field temperature Ca∞
cl = µ1U/σ∞

Ohnesorge number Oh = µ1/
√
ρ1σwR

Prandtl number Pr = µ1cp1/k1
Eckert number Ec = U2/cp1(Tw − T∞)

Marangoni number Ma = γ(Tw − T∞)R/µ1α1

Table 1. Definition of dimensionless groups used. The indices 1 and 2 refer to the droplet and
exterior fluid, respectively; α = k/ρcp is the thermal diffusivity.

Here, some rescaling was necessary to facilitate a lubrication approach in this sec-
tion: the coordinate r is still made dimensionless with R, but for the height Rθa is
used, time is made dimensionless with µ1R/(σwθ

3
w) in this section; B = rkRθw/δ,

M̂a = Bθ−2
w γ(Tw − T∞)/σw = MaOh2wB/(Prθ

2
w) and β = λ̂/(Rθw). The dimension-

less variables used here are consistent with those in Hocking (1983), apart from factors
of 3 in the characteristic length and timescales introduced in that prior work having been
omitted here. Small differences with the dimensionless evolution equation presented in
Ehrhard & Davis (1991) (their Eq. 4.8) are due to different characteristic scales being
employed here. The boundary conditions are: at r = a(t), h = 0 and hr = −1; at r = 0,
hr = 0 due to symmetry, and we require a constant drop volume 2π

∫ a

0
rhdr = πχ/2 (we

keep the parameter χ to facilitate comparisons to various prior studies below).
The thermal contribution in (3.1) is entirely due to Marangoni stress. The variation of

the surface tension with temperature (2.1) also enters in the normal stress condition, but
inspection of the derivation of (3.1) in Ehrhard & Davis (1991) confirms this to lead to

a contribution that is O(θ2wM̂a/B) in (3.1), which is ignored in view of the lubrication
approximation made. For internal consistency, the analysis of thermal effects through
Marangoni stresses (the thermal term kept in (3.1)) requires B ≫ θ2.
The isothermal quasi-steady state drop shape on the scale of the entire drop is readily

obtained by ignoring slip, giving the usual result h0 = χ(a2−r2)/a4, where a depends on
time, the apparent contact angle corresponds to 2χθw/a

3. We obtain the first correction
of h0 away from the contact line by substituting h = h0 + h1 + ... in (3.1), linearising in
h1, setting ht = ȧ∂h0/∂a and imposing the conditions h1(a) = 0 and 0 =

∫ a

0
rh1dr =

−
∫ a

0
r2h1,rdr. (From (3.1), h1 is linear in ȧ and M̂a; anticipating the result (3.4) of the

analysis, this corresponds to an expansion in 1/|lnβ| and M̂a.) This results in

rh1,r(r, t) =
3

4
M̂a

(
(a2 − r2)

(
ln

(
a2 − r2

a2

)
− ln

(
1 + B̂(1− r2/a2)

1 + B̂

))
+ r2F (B̂)

)

−3

4

a4ȧ

χ2

(
ln

(
a2 − r2

a2

)
+ 2

r2

a2

)
(3.2)

where B̂ ≡ Bχ/a2 and F (B̂) ≡ B̂−1
(
1− B̂−1ln

(
1 + B̂

))
, which varies monotonically

between 1/2 (B̂ → 0) and zero (B̂ → ∞). In the isothermal limit, (3.2) agrees exactly

with Hocking (1983). Also, in the limit ȧ = 0, B → 0 (at small but finite M̂a) it reduces
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to Eq. 7.2 in Ehrhard & Davis (1991). It is seen in (3.2) that thermal effects vanish in
the adiabatic limit B → 0 and in the perfect conduction limit B → ∞; in both these
limits the interface temperature 1/(1 + Bh) becomes a constant (corresponding to the
wall and exterior temperature, respectively), resulting in no Marangoni stress. We note

though that if M̂a/B is kept fixed in the limit B̂ → ∞, thermal effects remain, with
B̂F (B̂) → 1.
Next, we require the slope as the contact line is approached, which follows as

−hr(r ↑ a) ≈
2χ

a3
+

3

4

a6ȧ

χ2

(
ln
(
1− r

a

)
+ ln2 + 2

)
− 3

4
aM̂aF (B̂). (3.3)

Evidently, this result for the slope is logarithmically singular as the contact line is ap-
proached. This ’outer region’ result is to be matched to a result for the ’inner region’,
the immediate vicinity of the contact line, wherein this singularity is alleviated by the
presence of slip. It should be noted however that the curvature remains singular in this
approach, due to isothermal and non-isothermal contributions (the latter are identified in
Ehrhard & Davis (1991)), as can be inferred from differentiating (3.2). We consider the
case wherein ȧlnβ−1 is not vanishingly small. This usually leads to the requirement of the
introduction of a third, ’intermediate’ region, to match the inner and outer regions (see
Cox 1986); very recently, such an intermediate region has been demonstrated by Sibley
et al. (2015b) to be an overlap region of outer and inner regions. For the entire contact
line region it is readily seen from (3.1) that the usual rescaling of the height by the slip
length (e.g., Hocking 1983) at this point in the analysis results in the thermal term being

preceded by a factor of order βM̂a. This is assumed herein to be a very small parameter
and is ignored here in the inner region. Therefore, the solution for the inner region is
unchanged from that obtained by Hocking (1983), after changing to the present notation.
In the intermediate/overlap region the same argument arises, and thermal contributions
are exponentially small, except in a narrow strip at the very outer edge of this region,
but this remains small if M̂a is small, as assumed here.
To proceed, it is usually noted next that the third power of (3.3) (after linearisation

in ȧ and M̂a) yields a term ∼ ln(r − a) that matches with a contribution to the result
for the intermediate layer obtained by Hocking (1983). Therefore, the specific function of
the interface angle for which expressions from outer and intermediate region are matched
is selected by a requirement that the singular terms match exactly (A similar step oc-
curs in Hocking & Rivers (1982), although there another function of the interface angle
is matched because lubrication theory is not used there). This step has recently been
justified by Sibley et al. (2015b). Proceeding with matching the third power of the slope
at the next order in r − a (which is O(1)) yields the condition(

2χ

a3

)3

− 9aM̂a

(
2χ

a3

)2

F (B̂) = 1 + 9ȧln

(
a

6eβ

)
. (3.4)

This agrees with Eq. 4.1 in Hocking (1983) if M̂a = 0 (therein χ = 4, the dimensionless
time variable is three times smaller than ours, so his ȧ ≡ da/dt corresponds to 3ȧ here;
also, his dimensionless slip length corresponds to 3β used here). We note that within the
approximations used here, (3.4) can be written in dimensional variables as

θ3a = θ3w + 9Caclln

(
aθw
6eλ

)
(3.5)

which agrees exactly with Hocking (1983), but (3.5) only holds if the apparent angle is
defined based on the first two terms on the right-hand side of (3.3). The relation between
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the angle that the spherical cap makes with the substrate (denoted by θsc) and this
apparent angle is, by comparing (3.5) with (3.4),

θa = θsc − 3θwaM̂aF (B̂); (3.6)

If the apparent angle is chosen as the angle obtained by fitting a spherical cap, θa should
be eliminated from (3.5) and (3.6). The presence of the dimensionless value of a in these
results may seem peculiar, but we recall that this is multiplied by B in the definitions of
B̂ and M̂a, and B is proportional to the length scale R used to make a dimensionless,
so R drops out of the product aB and hence out of (3.6).

The matching relations developed above can be cast in the form of the contact-line
speed as a power of the difference between apparent and static contact angle assumed by
Ehrhard & Davis (1991) (limit of small capillary and Biot numbers), within the accuracy
used, if the power is taken to be 1/3; this has been has compared with experiments
by Ehrhard (1993), with good result when using an exponent of 1/2.8. The use of the
present results in the next section - notably (3.5) and (3.6) - is in their validity for all
Biot numbers, and explicit representation of the slip length, under unsteady conditions.
We briefly further analyse the present results here, however.

If the initial condition corresponds to the isothermal equilibrium, spreading results
on a cold substrate from thermal effects and dewetting on a hot surface (as the first
term on both sides in (3.4) then cancel initially), as determined previously by Ehrhard
& Davis (1991). In fact, from (3.4) we conclude that if the initial condition is such that
spreading (dewetting) is expected under isothermal conditions, dewetting may occur if
the substrate is cold (hot).

Regarding the rate of spreading/dewetting, after a short-time regime during which

the contact-line velocity is constant, da/dt ∼ −M̂a, (3.4) would not appear to allow
for a general power-law under non-isothermal conditions. Yet assuming the spherical-
cap angle to be very close to the static angle, or both angles to be small, results in
a(t) ∼ −sgn(M̂a) |M̂a t| 16 , where M̂a t amounts to a rescaling of the time variable such
that in the isothermal visco-capillary time scale ∼ µ1R/σw the surface tension σw is
replaced by γ(Tw − T∞). Of course, in the isothermal case, the balance between the first
term on the left-hand side with the last term on the right-hand side recovers Tanner’s
law for axisymmetric systems (a ∼ t

1
10 ) (Tanner 1979).

A power-law for a(t) has not been predicted previously for non-isothermal systems, to
our knowledge (Ehrhard (1993) compared instead with the lubrication theory of Ehrhard
& Davis (1991)). We therefore compare in Fig. 2a the present prediction of a ∼ t1/6 with
the experimental data of Ehrhard (1993) for perfectly-wetting silicone oil on a non-
isothermal glass surface. We have used here his data for the case with the weakest effects
of gravity (data for cases wherein these are stronger differ only marginally). It is seen
that a considerable segment of the curve follows a similar power law (as is clear from
the corresponding figure in Ehrhard (1993), this power law does differ from Tanner’s
law). We also note that for a power law of 1/6 the effect of the initial condition has
vanished once the radius is about 1.3 its initial value, which corresponds to the start of
the experimental data.

When an equilibrium drop shape has almost been reached, such a power law no longer
applies. This late-time regime, similar to the exponential late-time regime in isothermal
spreading (Hocking 1983), is obtained from linearisation (here of (3.4)) in a(t) − a∞
(where a∞ is the equilibrium radius). Allowing for a time-dependent Marangoni number,
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Figure 2. Confirmation of power-law spreading rate as a function of time by comparison with
the experiments of Ehrhard (1993) on silicon oil droplets spreading on a cold solid substrate
(here a and t are as defined in Ehrhard (1993)). Symbols are from experiments and the dashed

line represents ∼ t1/6.

we obtain

a(t) ≈ a∞ −G(∞) + (a0 − a∞ +G(∞)) e−bt +G(t), G(t) =

∫ t

0

c(τ)e−b(t−τ)dτ, (3.7)

where b = −A3
∞/ln(a∞/(6eβ)), c = (A3

∞ − 1 − 9a∞M̃aA2
∞F )/(9ln(a∞/(6eβ))), with

A∞ ≡ 2χ/a3∞ = θini/θw, where c is allowed to depend on time by a possible time-

dependent value of M̂a. For constant thermal forcing this corresponds to an exponential
regime with the same exponential e−bt as in the isothermal limit, thermal effects then
only enter in the amplitude. For an exponential thermal forcing c(t) ∼ e−βt, a(t) is a
linear combination of e−bt and e−βt. There is insufficient experimental data available to
validate this late-time regime analysis. Ehrhard (1993) also presented experimental data
for paraffin oil with a contact angle of 8o that differ substantially from a power law for
perfectly wetting fluids as the equilibrium shape was approached, potentially consistent
with the above predictions. But an exponential curve fit has not been pursued here, as
several parameters would have to be fitted for a single data set.
The analysis presented here is restricted in many ways - thin drops, a small Marangoni

number, the approximate representation of the external temperature field through a
prescribed boundary-layer thickness in the interfacial condition for temperature, and the
approximate matching procedure adopted. In order to go beyond these restrictions, we
turn to full axisymmetric DNSs in the subsequent sections, and return to the lubrication
theory in the discussion of the DNS results.

4. Computational method for DNS

For DNS beyond the lubrication limit, the finite-difference-based level-set method of
Sui & Spelt (2013a) has been extended. The continuous surface tension formulation of
the momentum equations is as under isothermal conditions (e.g., Brackbill et al. 1992),
based on a divergence-free velocity field, and is not repeated here. A first difference is the
force density term f(x, t) in the momentum equation which represents herein surface
tension with Marangoni stresses due to temperature variations (e.g., Herrmann et al.
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2008),

f(x, t) = σ(T )κ∇H(ϕ) +∇sσ(T )|∇H(ϕ)| (4.1)

where κ denotes the interface curvature, ϕ is the level-set function, H is the Heaviside
function, and ∇s = (I−nn) ·∇ is the surface gradient operator. The standard approach
of Sussman et al. (1999) is followed to smoothen the jumps in H over a few grid cells.

A second difference with isothermal approaches is that an energy balance is solved for
the temperature field in (4.1). The energy equations for the two fluids involved (along
with, in Sec. 7, conduction in the substrate) are combined into a single equation in the
same manner as the momentum equation,

ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇ · (k∇T ). (4.2)

In both fluids, the local values of ρcp and k are determined as for the density and
viscosity in the momentum equation (i.e., using relations of the form A(x, t) = A1+(A2−
A1)H(ϕ(x, t))). This formulation is readily derived and shown to account for continuity
of temperature and conductive flux at the interface following the arguments as used
in the derivation of the continuous surface tension formulation. The solid substrate is
represented in Sec. 7 as a third phase with zero velocity and constant physical properties.
Viscous heating has been ignored in (4.2) by virtue of the small contact line speeds
considered in the present study; we have conducted tests that include this but found no
significant effect on results when EcPr ≪ 1. We have also assumed the thermal expansion
coefficient to be sufficiently small for its effects to be negligible.

A significant difficulty is the large range of length scales involved, which requires exces-
sive resources unless an accurate macroscale model can be formulated (Sui et al. 2014),
which is not available for non-isothermal systems. In order to simulate flows at more or
less realistic values of a dimensionless slip length, λ̂/R = O(10−4), we have incorporated
an adaptive mesh refinement tool. Details and extensive validation test results for isother-
mal conditions can be found in Sui & Spelt (2013a). For non-isothermal conditions we
have validated the code by studying thermocapillary migration of a deformable droplet in
an infinite quiescent flow with a constant temperature gradient. The terminal migration
speed has been obtained analytically by Young et al. (1959) for the double limit of small
Reynolds and Marangoni numbers. At Re = 0.1 and Ma = 0.1, the difference between
the terminal migration speeds from the present numerical simulation and this analytical
solution is within 0.09%. Various comparisons are made between computational results
and theoretical analyses throughout this paper. An explicit test from some asympotic
analysis is not available for the problem simulated though, due to differences in boundary
conditions used in lubrication theory and the contact-line model in the simulations. A
direct validation test for a non-isothermal system with contact lines has been conducted
for another system, a cylindrical droplet on a substrate that is kept at a non-uniform
temperature, see Sui (2014).

Throughout the following, we have used rd = rv = rc = 0.1, rk = 0.01, and Pr = 1
in most simulations unless otherwise specified; the values of the remaining dimensionless
parameters are stated below, where appropriate. We have verified that the instantaneous
values of Re and the Péclet number Pe = RePr are small. Typically, the domain size
is Lr × Lz = 1 × 1 (for small θw) or 2 × 2 (for θw > π/3). The mesh resolution in the
present study is similar to that used in our previous work (Sui & Spelt 2013a), which is
sufficient to give mesh-converged results.
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Figure 3. Comparison of the droplet profiles for a cold surface at Oh = 0.141, θini = θw = π/6,
λ = 0.0004, Cacl = 0.0042, Ma = −25. The black solid line represents the DNS result, the red
dash-dotted line is obtained from the isothermal theory of Hocking & Rivers (1982) in the outer
region, and the blue dashed line is the isothermal theory with apparent contact angle calcuated
from the present non-isothermal theory.

5. DNS results for moderate contact angles

In this section and the next, we consider spreading and dewetting of droplets on a
substrate that is held at constant uniform temperature (which differs from that of the
initial temperature in the two fluids). For sufficiently small contact angle values, the
DNS results are consistent with those from the lubrication theory of Sec. 3. For instance,
a droplet on a cold surface with θini = θw = π/3 for Oh = 0.141, Ma = −2.5 does
spread, as predicted by the lubrication theory. The resulting behaviour exhibits also
several similarities with isothermal spreading: the velocity field is similar to ordinary
wedge flow, and the velocity along the interface is linear in the distance to the contact
line, again similar to ordinary wedge flow driven by a wall subject to a slip boundary
condition (not shown).
The drop shape is significantly different from that in isothermal spreading, however, as

can be seen in Fig. 3 which is discussed further below. In Fig. 4 some typical snapshots
during spreading on a cold substrate are presented for the angle that the interface makes
with the substrate as a function of the distance to the contact line s, for different values
of Ma. The corresponding interfacial temperature is also shown. For the largest value of
|Ma|, the drop shape is seen to be strongly distorted at s = O(0.1). The temperature
field has only affected part of the droplet at this point, such that the surface tension is
not uniform and Marangoni stresses further distort the drop shape; these effects appear
to progress in these figures in the form of a wave from the contact line. Qualitatively the
same is observed at the lower value of |Ma| (Fig. 4a), but of course much weaker there.
Although close agreement was obtained for isothermal spreading with the theory of

Hocking & Rivers (1982) by Sui & Spelt (2013a), we see in Fig. 4 that this is not
so here. The isothermal theory for the outer region is seen to strongly differ from the
DNS data, whereas in the intermediate region the DNS data are approached close to
the contact line. The comparison in the outer region is reasonable when the apparent
angle is calculated from the present non-isothermal theory, as is further confirmed by
the comparison of predicted droplet shapes in the outer region shown in Fig. 3. In the
calculation of apparent angle, the value of B is not known a priori; as detailed below, we
have inferred and used here B = 0.21. We recall also that for isothermal conditions, the
corresponding lubrication theory (of Hocking 1983) has been found previously to agree
reasonably well with the DNSs (Sui & Spelt 2013a).
We have measured an apparent angle by fitting a spherical cap through the outer region
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Figure 4. Angle that the interface makes with the substrate (upper panels) and interfacial
temperature (lower panels) vs. arc length from the contact line during spreading on a cold
surface for Oh = 0.141, θini = θw = π/6, λ = 0.0004. (a,c) Cacl = 0.0007, Ma = −5; (b,d)
Cacl = 0.0042, Ma = −25. Solid lines are from DNS, the dashed lines are the intermediate and
outer results of Hocking & Rivers (1982), dash-dotted lines are the outer results of Hocking &
Rivers (1982) with the apparent angle calculated from Eq. 3.5 and Eq. 3.6, where B = 0.21 is
inferred from Fig. 5.
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Figure 5. Apparent angle as a function of the normalized spreading rate. λ = 0.002, Oh = 0.141,
θini = θw = π/3, Ma= -10 (a) and -40 (b). Symbols are from DNS, the dashed lines are from
Eq. 3.5 with θa = θsc, the solid lines are Eq. 3.6, with B = 0.21 in both cases.

of the droplet, corresponding to θsc in Sec. 3. The results are shown in Fig. 5, where also
the theoretical prediction by Hocking & Rivers (1982) for the corresponding isothermal
system is shown. Under isothermal conditions, this angle may naturally be considered as
the apparent angle (e.g., Sui & Spelt 2013a), but we now see that with thermocapillarity,
θsc attains a considerably lower value than predicted, in line with the snapshots shown in
Fig. 4. Crucially, we find that the non-isothermal lubrication theory, Eq. 3.5 and Eq. 3.6,
gives a reasonable prediction when taking B = 0.21 (corresponding to δ = O(0.1), which
is comparable to the thickness of the droplet). We have also conducted simulations for
other parameter values to verify the robustness of this finding, including using rk = 0.1
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Figure 6. (a) Angle that the interface makes with the substrate vs. arc length from the con-
tact line during dewetting on a hot surface for Oh = 0.141, θini = θw = π/6, λ = 0.0004,
Cacl = −0.00087, Ma = 5. The solid line is from DNS, the dashed lines are the intermediate
and outer results of Hocking & Rivers (1982), the dash-dotted line is the outer result of Hocking
& Rivers (1982) with the apparent angle calculated from (3.5) and (3.6) with B = 0.21. (b)
Apparent angle as a function of the normalized contact-line speed. λ = 0.002, Oh = 0.141,
θini = θw = π/6, Ma= 5. Symbols are from DNS, the dashed line is (3.5) with θa = θsc, the
solid line is from (3.5) and (3.6) with B = 0.21.
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Figure 7. Change in contact-line radius versus time for the cases corresponding to the wetting
cases of Fig.5a-b, (short dashes and solid line, respectively) and the dewetting case of Fig.6b
(dash-dotted line), all exhibiting a power-law regime.

instead of 0.01, resulting in similar good agreement in θsc. The thermal boundary layer
thickens with rk, so an almost unchanged value for B is not unexpected.
Next, we consider a droplet on a hot surface with θini = θw, which is found here to

result in dewetting, consistent with the lubrication theory. Figure 6 shows the interface
shape during dewetting and the apparent angle as a function of normalized contact line
speed. We recall here that hitherto no non-isothermal theory is available, except for
isothermal spreading, which is seen in this figure not to yield an accurate prediction.
Interestingly, the present non-isothermal theory, using the same value for B as in Fig. 6
(which is for a case of droplet spreading rather than dewetting), leads to a reasonable
prediction of the outer shape of the droplet and the apparent angle.
The rate of spreading corresponding to the cases studied in this section is presented in

Fig.7. The results for spreading and dewetting cases are qualitatively similar. From the
lubrication theory in Sec.3, at short times da/dt ∼ −M̂a is expected, which is reasonably
well approached by the DNS data regarding an initial linear behaviour in time and in
Ma (the results for the dewetting case do not fit exactly in the results for the wetting
case but is for a different static contact angle). At larger times the change in contact-line
radius appears to exhibit a power-law dependence in time almost up to the point of
the maximum displacement, with an exponent close to 5/6, especially for the cases of
spreading induced by a cold surface.



12 Y. Sui & P. D. M. Spelt

(a)

r

z

(b)
r

z

r

z

Figure 8. Flow field with instantaneous streamlines at Oh = 0.141, θini = θw = 3π/4,Ma = 10,
λ = 0.002.(a) near the contact line in a frame of reference moving with the contact line, wherein
the blue dashed line identifies the injection-splitting streamline; (b) global flow in a stationary
frame.

To conclude, the DNS results indicate that for modest contact angle values, close
to the contact line, the isothermal model remains useful, whereas the outer region is
much modified by Marangoni stresses, consistent with non-isothermal lubrication theory,
although the predictive capability of the latter for the spreading rate is limited.

6. Large contact angles: spreading/dewetting reversal

Thus far, the results of lubrication theory and DNSs all indicate that at small contact
angles, drops will spread on a surface, or at least, spreading will be promoted, if the
substrate is at a temperature lower than the initial temperature of the droplet (referred
to herein as a cold wall), and dewet on a hot surface. In our studies we have taken the
initial droplet temperature equal to the ambient temperature of the surrounding fluid.
We now examine the corresponding behaviour at large contact angles using DNS.
We have found that a hot surface can promote spreading if the contact angle is large:

an example is shown in Fig. 8 for Oh = 0.141, θini = θw = 3π/4. The flow pattern for this
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Figure 9. Phase diagram Oh = 0.141, Ma = 10, λ = 0.002: ’×’ represents spreading and ’+’
dewetting. The solid (dashed) lines indicate the prediction presented in Sec. 6.2 based on (6.9)
of the critical value of θ = θw = θini above which spreading (dewetting) on a hot surface is
promoted by uniform Marangoni stress alone in a simple wedge model. Note, the role of normal
stress is also to promote the spreading on a hot wall, especially at large contact angles, as
discussed in Sec. 6.1, and therefore to lower the reversal at large θ.

spreading droplet is seen to involve transport along the interface away from the contact
line, which corresponds in the direction of the Marangoni stress. For spreading to occur,
an injection-splitting streamline is expected inside the droplet, for the flow along the wall
to be directed radially inwards in the frame of reference moving with the contact line.
We have conducted a parametric study to identify the regime boundaries in parameter

space, primarily in terms of the viscosity ratio and the contact angle. A phase diagram
is shown in Fig. 9 for a droplet on a hot surface with θini = θw. Spreading is seen to be
promoted on a hot surface for large contact angles and a large droplet viscosity (small
rv), and that the critical contact angle for spreading/dewetting transition decreases when
increasing the external fluid viscosity but is not sensitive to the value of rv for rv less than
0.1 or larger than 10. This means that for realistic liquids droplets will spread on a hot
surface when the contact angle is larger than about 110o, while a bubble attached to a hot
surface will spread when the contact angle defined from the liquid phase is smaller than
120o. At high viscosity ratios, the ejection-splitting streamline appears inside the droplet,
and the droplet spreads. When the viscosity of the exteral medium is reduced somewhat,
the ejection-splitting streamline appears outside the droplet, leading to dewetting. We
have confirmed that the phase diagram is robust when 0.5 6 Ma 6 40, and that the
contact line moves in an opposite direction when using a cold instead of a hot wall.
This flow diagram is surprisingly similar to that for the direction of thermocapillary
translation of an entire droplet on a non-uniformly heated/cooled substrate (Sui 2014). In
the subsequent subsections we investigate the origin of the spreading/dewetting reversal,
not addressed in prior work.

6.1. Role of interfacial normal stress condition: inviscid model

Under isothermal conditions the equilibrium drop shape can be determined by requiring
the normal stress jump across the interface to be constant, i.e., the requirement that the
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Figure 10. Contact-line radius R normalized by its isothermal value at the same drop volume.
Result obtained by numerical integrating of (6.1), for σ(z) = 1 + 0.5e−10z (cold wall, squares)
and σ(z) = 1− 0.5e−10z (hot wall, triangles).

surface-tension coefficient times the curvature be constant. Under non-isothermal condi-
tions this condition should be modified because the surface-tension coefficient depends
on the local temperature at the interface, and because Marangoni stresses can drive a
(possibly circulating) fluid flow, which in turn can yield a contibution to the normal
stress balance. In the lubrication theory presented in Sec. 3, solely the second of these
effects is accounted for, the first having dropped out by the lubrication approximation.
We have conducted a test case using DNS wherein Marangoni stresses were switched off
(by leaving out the last term in Eq. 4.1), and found that a droplet at θini = θw = 120o

still spreads on a hot surface, suggesting that this may be due to the variation in the
surface-tension coefficient in the normal stress jump.
It is therefore instructive to briefly leave out Marangoni stresses, and investigate in-

stead the direct thermal effect on such an equilibrium drop shape, which is therefore an
inviscid analysis. For that purpose, denote the equilibrium interface location by r = R(z)
(see Fig. 1), and assume the surface tension coefficient to be a known function of z only,
denoted by σ(z). The normal stress condition at the interface under equilibrium con-
ditions is then the requirement that σ(z)κ = constant (≡ α, say). Here the interface
curvature κ = ∇ · n, with the normal vector of the interface pointing out of the droplet
n having components nr = 1/

√
1 + (dR/dz)2 and nz = −dR/dz/

√
1 + (dR/dz)2 (see

Fig. 1). The above-mentioned stress condition is then obtained as

d2R

dz2
=

1

R

(
1 +

(
dR

dz

)2
)

− α

σ

(
1 +

(
dR

dz

)2
)3/2

. (6.1)

This equation for R(z) is subject to the boundary condition dR/dz(z = 0) = −1/tanθw
and that the drop volume corresponds to the prescribed volume. This problem is readily
solved numerically using the following iterative approach. We start with isothermal cases
and place the contact line at r = 1, i.e., by setting R(z = 0) = 1, and then solve the
resulting initial-value problem. The value of α is then obtained by repeatedly solving this
ODE iteratively until a drop shape is obtained that closes at the top. For non-isothermal
cases, the constraint of the contact-line position is replaced by the constraint of the
resulting droplet volume being equal to the volume obtained for the isothermal case at
the same contact angle. Thus, for non-isothermal cases, we embed the above procedure
for isothermal systems in an iterative procedure for the contact-line position subject to
the volume constraint. The key result is then the value of R(z = 0): is this larger or
smaller than the isothermal value? We have followed this procedure for the model profile
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Figure 11. Problem definition used in Sec. 6.2. Along the interface φ = 0 a jump in tangential
stress is prescribed, represented by the thick (red) arrow.

σ(z) = 1 ± 0.5e−10z, wherein the sign corresponds to hot and cold walls (we have also
verified that other profiles for σ(z) give similar results - notably a linear dependency on
z).
The results are shown in Fig. 10. At small contact angles, only a comparitively weak

effect is observed, consistent with the lubrication theory in Sec. 3, where thermal effects
through the normal stress condition were found to be negligible. At large contact angles,
a much stronger effect is observed, suggesting that the droplet would spread on a hot
wall and to dewet on a cold wall. On their own, these thermal effects through the normal
stress condition don’t cause a spreading/dewetting transition. This is confirmed by the
numerical simulation tests wherein we switched off the Marangoni stress: no reversal was
observed, but spreading did result in all cases on a hot wall. Therefore, thermal effects
through the normal stress jump condition compete with those through Marangoni stress
that are predicted by lubrication theory at small contact angles. This is consistent with
the results obtained with the DNS shown in Fig. 9 - a reversal at some critical contact
angle.

6.2. Role of Marangoni stress: wedge flow model

In the previous subsection an inviscid mechanism is identified that promotes at large
contact angles the reversal of the spreading/dewetting that would otherwise result from
Marangoni stress for small contact angles. The mechanism studied there being inviscid,
this cannot in itself explain the strong decrease in the critical value of the contact angle
at modest to large rv. Instead, the effects of Marangoni stress must be weaker at larger
values of rv, or perhaps even reverse themselves upon increasing the contact angle at a
fixed value of rv.
In this section, we determine the direction of contact-line motion due to Marangoni

stress for Stokes flow in a simplified wedge-shape geometry (e.g., Moffatt (1964)), but for
two fluids separated by an interface over which a jump in tangential stress is imposed, as
a model of Marangoni stress. Thus we set out to first determine the flow field (resulting
from the imposed jump in tangential stress) in a perfect wedge geometry for a stationary
substrate, and then use the normal stress condition to determine the first correction
in the interface shape caused by the resulting jump in normal stress, and to infer the
resulting contact-line motion. The results are then compared with the flow-regime map,
Fig. 9.
The notation used in this section is defined in Fig. 11. Polar coordinates (q, φ) are

used with the origin fixed at the contact line. The interface between the two fluids is at
φ = 0, with fluid 1 at φ < 0 and fluid 2 at φ > 0. At φ = 0, the shear stress τ1 for the
lower fluid differs from τ2 for fluid 2. The no-slip wall bounding fluid 1 is at φ = −θ,
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this same wall bounds fluid 2 at φ = π − θ. The dependency of the Marangoni stress
τ1 − τ2 on q resulting from some temperature field can generally be written as a Taylor
series, with likewise expansions for the stream function. We shall assume that in the
far field, on a length scale L, the Marangoni stress vanishes, and hence the associated
velocity and pressure fields. In the following, we shall mainly consider the first term in
the series expansion but do indicate how subsequent contributions can be obtained. The
interfacial temperature profiles presented in Fig. 4c,d show non-linear variation with the
arc length from the contact line, s, at small and large s, but the main variation may to
a first approximation be represented by a linear function. We therefore consider mainly
the case that τ ≡ τ1 − τ2 is a constant. The radial coordinate will be taken to have been
made dimensionless with L.
The general solution for the stream function in fluid 1 can then be obtained from

separation of variables,

ψ1(q, φ) = µ−1
1 τ1q

2(A1cos2φ+B1sin2φ+ C1φ+D1). (6.2)

The no-slip condition at φ = −θ, the no-penetration condition and shear stress condition
at φ = 0 yield

A1 = −1
4 , 4B1 =

cos2θ + 2θsin2θ − 1

2θcos2θ − sin2θ
, C1 = 1

2 sin2θ − 2B1cos2θ, D1 = 1
4 . (6.3)

The velocity along the interface varies linearly with q,

µ−1
1 τ1(2B1 + C1)q. (6.4)

The flow in fluid 2 is driven by continuity of velocity across the interface. Since this
velocity, as we have seen, varies linearly with q, and scales with τ1/µ1, we find that in
fluid 2 the stream function is of the same form as in fluid 1, and shall write this as
ψ2(q, φ) = µ−1

1 τ1q
2(A2cos2φ+B2sin2φ+C2φ+D2). The no-slip condition at φ = π− θ,

together with the conditions at φ = 0 corresponding to a no-penetration condition and
the radial velocity obtained for fluid 1 above, give for the integration constants in the
solution for ψ2,

A2 =
−B2sin(2π − 2θ)− 2C2(π − θ)

cos(2π − 2θ)− 1
, C2 = 2B1 + C1 − 2B2, D2 = −A2,

B2 =
(B1 + C1/2) (sin(2π − 2θ)− 2(π − θ)(cos(2π − 2θ) + 1))

2sin(2π − 2θ)− 2(π − θ)(cos(2π − 2θ) + 1)
. (6.5)

The shear stress at φ = 0 that results from the flow in fluid 2 is −4A2µ2τ1/µ1. Therefore,
the jump in the shear stress across the interface is

τ = τ1 (1 + 4A2rv) . (6.6)

The solution in both fluids is now complete. We note that the stream functions determined
here represent a flow that is not directly associated with contact-line motion, but is solely
driven by the jump in tangential stress. No contact-line motion occurs in this solution,
and the substrate is stationary. The normal stress condition has not been used or needed
here: in the assumed limit of large surface tension, interface curvature resulting from a
mismatch in normal stress at φ = 0 would be asymptotically small by assuming surface
tension to be asymptotically large. We return to this below, when we relax this limit.
In summary, for a given stress jump τ , viscosity ratio and angle θ, τ1 is determined

from (6.6) and the coefficients from (6.3) and (6.5). The above analysis is for an imposed
constant Marangoni stress. In the numerical simulations, or in general applications, the
Marangoni stress results from the temperature field, and a constant Marangoni stress
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is only a first approximation. The above analysis can be generalized by considering a
Taylor series expansion for the Marangoni stress as a function of q. Each term in such
series leads to a problem such as that outlined above: a contribution to the Marangoni
stress ∼ µ1Sβq

β−2 leads to a contribution to the stream function Sβq
βfβ(φ), where the

coefficients in the general solution of fβ(φ) (e.g. Moffatt 1964) are obtained analogously
to the above. Although we proceed with the analysis for constant Marangoni stress below,
we do provide at key steps the corresponding general result, to ensure the result is not
obscured if the general case is considered.
Spreading might be expected if the velocity at the interface (given by (6.4)) is nega-

tive, as this corresponds to the direction for spreading without Marangoni stress (Moffatt
1964); we generally find this to correspond to τ negative (i.e., a cold surface). But this
is not conclusive as no contact-line motion is actually predicted directly by this argu-
ment. Rather, as demonstrated below, the normal stress condition for large but finite
surface tension yields a first correction of the interface shape by substitution of the flow
determined above. In this respect, the present analysis has a parallel in the work of Cox
(1986) (around his Eq. (3.20)), but for a different wedge flow, which is determined in
the present problem by Marangoni stress instead of being associated directly (as in Cox
(1986)) with the contact-line motion.
The contribution from the deviatoric stress to the total normal stress σφφ,i is

(µi/µ1)τ1 (−4Aisin2φ+ 4Bicos2φ+ 2Ci); any further contributions to the Marangoni
stress mentioned above (β > 2) can be determined directly accordingly from the corre-
sponding stream function. The pressure in fluid i is obtained by substituting the stream
function in the balance of the radial component of momentum. To confirm that this can
be used also when the general expansion of the Marangoni stress in q is accounted for,
we first consider the corresponding general result for the pressure,

pi = 4
µiτ1Ci

µ1
lnq +

µi

µ1

∞∑
β=3

Sβq
β−2

β − 2

{
β2f ′β(θ) + f ′′′β (θ)

}
+ πi, (6.7)

where πi is an integration constant. The length scale L used in the definition of q has
been taken such that at q > 1 Marangoni stresses and the associated pressure disturbance
in each fluid vanish. Therefore, πi must cancel the summation in (6.7), so each term in
the summation may give a contribution to πi. In the following, we concentrate on the
leading term on the right-hand side of (6.7), which does not require a contribution to the
overall integration constant for it to vanish at q = 1.
We obtain for the difference in normal stress across the interface in the positive φ

direction, in analogy with Eq. (3.20) in Cox (1986),

−4 (rvC2 − C1) lnq − 2C1 + 2rvC2 + 4 (A1 − rvA2) sin2θ − 4 (B1 − rvB2) cos2θ

≡ −j(θ, rv)lnq − k(θ, rv), (6.8)

where we have divided by τ1. From (6.7) it is seen however that contributions to πi
therein to the pressure from β > 2 would enter in (6.8) at the same order in q as k. The
present approach is restricted to the leading (logarithmic) term in q, so k is replaced by a
general O(1) term henceforth. Eq. (6.8) is now equated to the surface tension coefficient
times the interfacial curvature, divided by τ1, which yields for the angle that the interface
makes with the substrate θ(q),

∂θ

∂q
= M̃a

(τ1σw
τσ

)
{j(θ, rv)lnq +O(1)} . (6.9)

where M̃a ≡ τL/σw with L the length scale used to make q dimensionless.
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Isothermal droplet spreading is driven by capillarity when the angle between the inter-
face and the wall as the contact-line is approached in the outer region exceeds θw. If this
apparent angle is lowered by thermal effects, this would reduce the difference with θw
that drives spreading, and hence reduce the speed of spreading, just as in the lubrication
theory presented in Sec. 3. This could be compensated by thermal effects within the
contact-line region, but temperature variation therein would be small due to the smaller
size of that region.
The result (6.9) establishes whether the interface is convex or concave as the contact

line approached. It does not establish whether the angle between the interface and the
wall is reduced for an arbitrary Marangoni stress distribution along the wedge; that would
require extending (6.8)-(6.9) to account for β > 2. This is not undertaken here because
it would require an estimated temperature distribution along the interface.
Thus it is now conjectured and tested against the numerical simulations, that the

sign of the logarithmic term in (6.9), which is dominant at small q, determines whether
spreading is promoted. In (6.9), the prefactor τ1/τ is known from (6.6); the factor σ/σw =

1+O(M̃a) should of course be taken consistent with the imposed Marangoni stress, but

is reduced to unity in (6.9) at small |M̃a|. Thus, recalling that a positive value of M̃a
corresponds to a hot surface, and that the logarithm in (6.9) is negative, a negative value
of τ1j/τ should result in a convex surface of fluid 1 which, according to the hypothesis
set out above, would promote spreading on a hot surface.
At small contact angles, the resulting prediction agrees with the lubrication theory.

Furthermore, we find that this model predicts a critical contact angle above which the role
of Marangoni stress is reversed. We have therefore indicated in Fig.9 by solid (dashed)
lines τ1j/τ = 0; above (below) these lines, τ1j/τ < 0, leading to an expectation of
spreading being promoted on a hot surface. Good agreement is obtained with the full
numerical simulations at intermediate values of rv. We recall here that only a constant
Marangoni stress is accounted for in a wedge flow model. Deviations from the prediction
such as at small and large rv may be caused by this.
The present model is seen to be of limited use at small values of rv, where it predicts

several solution branches. In most cases these are demarcated by singularities at roots
of 2θ = tan2θ, and in (6.6) (left and below the first critical line in Fig. 9, we do obtain
τ1j/τ > 0). These subtleties at low rv, and the overprediction there of the critical contact
angle for reversal, are of limited concern, as we recall from Sec. 6.1 that at such large
contact angles, a reversal is also promoted by direct thermal effects through the normal
stress condition.
To our knowledge experimental data on (a reversal of) spreading of a drop on a non-

isothermal substrate at large contact angles are currently not available, to test the present
findings and their applications in, for instance, droplet actuation and microfluid devices.

7. Effect of conduction inside the substrate

We account herein for the thermal conduction inside the substrate, imposing a constant
temperature Tw at its lower surface with the droplet on the top surface. A range of values
of the solid-to-droplet thermal conductivity ratio r̂k = ks/k1 and thickness of the solid
substrate H has been simulated. We take the value of ρcp for the solid to be the same
as that for the droplet. The typical temperature fields shown in Fig. 12 show substantial
changes in the range of solid conductivity values simulated. We analyze these further
below.
Despite the changes in the observed temperature field, tests for droplets with rv = 0.1, 1
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(a) (b) (c)

Figure 12. Instantaneous temperature profile during droplet spreading on a cold substrate of
which the lower surface is kept at constant temperature, with substrate conductivity r̂k = 100
(a), 1 (b), 0.01 (c), and substrate thickness H/R = 1/4. Other parameters are rk = 0.1,
Oh = 0.141, θini = θw = π/6, λ = 0.0008 and Ma = −25.

and various contact angles have established that heat conduction inside the substrate does
not change the phase diagram presented in Fig. 9 and that for droplet on a cold surface.
The main reason is that although heat conduction changes the temperature gradient along
the interface near the contact line, it does not change its sign. For example, for a droplet
on a cold surface, the temperature at the contact line is always lowest compared with the
interface temperature close to the contact line, independent of heat conduction inside
the substrate. This is different from an evaporating sessile droplet, wherein the interface
temperature is determined by both heat conduction and evaporation, and the interface
temperature gradient near the contact line can change its sign and therefore cause a
reversal of the internal flow circulation, when the ratio of r̂k is adjusted (Ristenpart et
al. 2007).
The contact-line dynamics presented in previous sections are approached here at suffi-

ciently large values of the conductivity ratio r̂k (O(100), see Fig. 12a). Also, the results
are then insensitive to the thickness of the substrate H when this is in the range of
0.1R to 2R. At lower values of r̂k, the droplet spreading rate strongly depends on the
thickness of the substrate. This is illustrated by Fig. 13a which presents the contact-line
speed as a function of time for a droplet on a cold substrate of various thicknesses at
r̂k = 3, and compares the results with those for a droplet on a constant-temperature wall.
When the deviation in instantaneous spreading speed remains within 2%, we consider
that the substrate is sufficiently thin for the heat conduction to be neglected. The critical
thickness Hc of the substrate is presented in Figure 13b versus r̂k. It is seen that upon
r̂k decreasing from 10 to 1, Hc sharply drops from a length scale similar to the initial
droplet radius to a very small value. In the experiments of Ehrhard (1993), a thin glass
substrate has been used. There r̂k was of O(10), and H/R was less than 0.1, therefore
the substrate can be assumed to have had a constant wall temperature. If a substrate is
coated with a layer of low thermal conductivity, even when the coating is very thin, the
assumption of a constant wall temperature approximation may be invalid.
Inspection of the temperature fields in Fig. 12 confirms the expectation that when the

thermal conductivity of the substrate is comparable to that of the droplet, |∂T/∂r| at the
contact line can be comparable (or even exceed) |∂T/∂z| (this is true even for r̂k = 10−4).
Furthermore, due to the low wall conductivity, the local wall temperature also changes
with time, resulting in a Marangoni number that decreases with time. The juxtaposi-
tion of these two effects renders further analysis complex. For the cases considered in
the present study, ∂T/∂r < 0, which would promote spreading, however, the decrease
in Marangoni number with time weakens spreading. In general, we find that low heat
conductivity of the substrate leads to a longer spreading period, because a temperature
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Figure 13. (a) Time evolution of the contact line speed. Black solid line is for droplet spreading
with Oh = 0.58, Ma = −0.3, θini = θw = π/6 and λ = 0.02. Green lines are results taking into
account heat conduction in the substrate with r̂k = 3. The thickness of the substrate is R/8,
R/16 and R/40 for the solid, dashed and dotted line respectively. (b) Critical thickness of the
substrate as a function of ratio of ratio of thermal conductivity between the substrate and the
droplet. Effect of heat conduction can be neglected below the thickness as explained in the text.
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Figure 14. Time evolution of the spreading radius of a droplet on a substrate with a thickness
of R/4 and thermal conductivities r̂k = 100 (solid line) and 1 (dashed line). Other parameters
are Oh = 0.141, Ma = −40, θini = θw = π/3, λ = 0.02.

gradient facilitating spreading can be maintained for longer, but that not necessarily
leads to a larger maximum spreading radius, see Fig. 14.

8. Conclusions

A modified lubrication theory for slip-limited non-isothermal droplet spreading/dewet-
ting has been derived. Although the interface shape close to the contact line is as expected
from isothermal theory at the corresponding contact-line speed, it has been demonstrated
that fitting a spherical cap to the entire droplet leads to an apparent angle that differs
strongly from that predicted by isothermal theory. A power law of the spreading rate has
also been obtained theoretically, and confirmed by experiments of Ehrhard (1993).
The DNS results demonstrate further that at sufficiently large contact angle and/or

viscosity of the outer fluid, thermal effects can reverse, leading to spreading being retarded
on a cold wall, opposite to the general trends for thin droplets. This has been shown to
be due to thermal effects that enter directly through the normal stress condition, and
through a reversal of the effects of Marangoni stress at contact angles that are sufficiently
large. Simplified models have been developed for both these effects, which has led to a
prediction of reversal that is useful especially at intermediate values of the viscosity ratio
of the two fluids.
The detailed interface shape has also been analyzed, with potential application in the

formulation of efficient computational methods that do not require excessive computa-
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tional resources (Sui & Spelt 2013b) and the analysis of inertial effects (Sui & Spelt
2013a) in non-isothermal systems.

Finally, a critical thickness of the substrate has been determined above which thermal
conduction inside the substrate substantially modifies the spreading rate. Wall conduc-
tion has not been found to modify the flow regime map.
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