An Adaptive Spectral Algorithm for the Recovery of Overlapping Communities in Networks - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

An Adaptive Spectral Algorithm for the Recovery of Overlapping Communities in Networks

Résumé

This paper presents combinatorial spectral clustering, a simple spectral algorithm designed to identify overlapping communities in networks. The algorithm is based on geometric properties of the spectrum of the expected adjacency matrix in a random graph model that we call stochastic blockmodel with overlap (SBMO). An adaptive version of the algorithm, that does not require the knowledge of the number of hidden communities, is proved to be consistent under the SBMO when the degrees in the graph are (slightly more than) logarithmic. The algorithm is shown to perform well on simulated data and on real-world graphs with known overlapping communities.
Fichier principal
Vignette du fichier
KBL15.pdf (585.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01163147 , version 1 (12-06-2015)
hal-01163147 , version 2 (19-05-2016)
hal-01163147 , version 3 (05-11-2017)

Identifiants

Citer

Emilie Kaufmann, Thomas Bonald, Marc Lelarge. An Adaptive Spectral Algorithm for the Recovery of Overlapping Communities in Networks. 2015. ⟨hal-01163147v1⟩
946 Consultations
473 Téléchargements

Altmetric

Partager

More