Universal Prediction Applied to Stylistic Music Generation - Archive ouverte HAL
Chapitre D'ouvrage Année : 2002

Universal Prediction Applied to Stylistic Music Generation

Shlomo Dubnov
Gérard Assayag

Résumé

Capturing a style of a particular piece or a composer is not an easy task. Several attempts to use machine learning methods to create models of style have appeared in the literature. These models do not provide an intentional description of some musical theory but rather use statistical techniques to capture regularities that are typical of certain music experience. A standard procedure in this approach is to assume a particular model for the data sequence (such as Markov model). A major difficulty is that a choice of an appropriate model is not evident for music. In this paper, we present a universal prediction algorithm that can be apllied to an arbitrary sequence regardless of its model. Operations such as improvisation or assistance to composition can be realised on the resulting representation.
Fichier principal
Vignette du fichier
UnivPredict.pdf (945.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01161368 , version 1 (28-01-2016)

Identifiants

  • HAL Id : hal-01161368 , version 1

Citer

Shlomo Dubnov, Gérard Assayag. Universal Prediction Applied to Stylistic Music Generation. Springer; Assayag, G., Feichtinger, H.G., Rodrigues, J.F. Mathematics and Music, A Diderot Mathematical Forum, pp.147-158, 2002. ⟨hal-01161368⟩
163 Consultations
205 Téléchargements

Partager

More