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Universal Prediction Applied to Stylistic Music Generation 
Gיrard Assayag (Ircam) , Shlomo Dubnov (Ben Gurion Univ.) 

 

 

Abstract 

Capturing a style of a particular piece or a composer is not an easy task. Several attempts to use machine 

learning methods to create models of style have appeared in the literature. These models do not provide an 

intentional description of some musical theory but rather use statistical techniques to capture regularities that are 

typical of certain music experience. A standard procedure in this approach is to assume a particular model for the 

data sequence (such as Markov model). A major difficulty is that a choice of an appropriate model is not evident 

for music. In this paper, we present a universal prediction algorithm that can be apllied to an arbitrary sequence 

regardless of its model. Operations such as improvisation or assistance to composition can be realised on the 

resulting representation.  

 

1. Introduction 

Machine learning is the process of deriving a set of 

rules from data examples. Being able to construct a 

music theory from examples is a great challenge, 

both intellectually, and as a means for a whole range 

of new exciting applications. Such models can be 

used for analysis and prediction, and, to a certain 

extent, they can generate acceptable original works 

that imitate the style of their masters, recreating a 

certain aspect of music experience that was present in 

the original data set. The process of composition is a 

highly structured mental process. Although it is very 

complex and hard to formalise, it is not completely 

random. The task of this research is to try to capture 

some of the regularity apparent in the composition 

process by applying information theoretic tools to 

this problem. 

Mind-reading Machines 

In early 50's at Bell Labs David Hagelbarger has built 

a simple 8 state machine, whose purpose was to play 

the "penny matching" game. The simple machine 

tried to match the future choices of a human player 

over a long sequence of random "head" or "tail" 

choices.  Mind-reading was done by looking at 

similar patterns in opponent's past sequence that 

would help predict the next guess. The achieved rate 

of success was greater that 50%, since human choices 

could not be completely random and analysing 

patterns of previous choices could help foretell the 

future.  

Inspired by Hagelbarger's success, Shannon has built 

a different machine with improved performance. An 

account of Shannon's philosophy on mind-reading 

machines can be found in [Shannon 1953]. 

It is important to note that if the model of the data 

sequence was known ahead of time, an optimum 

prediction could be achieved. The difficulty with 

most real situations is that the probability model for 

the data is unknown. Therefore one must use a 

predictor that woks well no matter what data model 

is. This idea is called "universal prediction". 

Music Generation and Style Replication 

Generative theory of music can be constructed by 

explicitly coding music rules in some logic or formal 

grammar (Cope 1987, Ebicoglu 1986, Lidov & 

Gambura 1973). This approach is sometimes called 

“expert system” or “knowledge engineering 

approach”.  A contrasting approach is the statistical 

learning or empirical induction approach. Several 

researchers have used probabilistic methods, notably 

Markov models, to model music (Pinkerton 1956, 

Brooks Jr. et al. 1993, Conklin and Witten 1995). 

Pinkerton used a small corpus of diatonic major- key 

nursery rhyme to learn a Markov model, which he 

later used to generate nursery rhymes. Because he 

used a small alphabet (seven symbols of the diatonic 

scale and a tied note symbol), he was able to use a 

high- order (long context) Markov model up to order 

eight.  Conklin and Witten (1995) used trigrams
1
 to 

generate chorale melodies from parameters on a 

corpus of Bach chorale melodies. A more recent 

Markov model experiment was done by Brooks Jr. et 

al. (1993). Like Conklin and Witten, they worked 

with chorale melodies, and like Pinkerton, they 

experimented with orders up to eight. Their corpus 

was of 37 hymn tunes (giving perhaps 5,000 note 

transitions). To capture similarities between pieces in 

different keys (but the same mode), all pieces were 

into C. The experiment showed that at very low 

orders (e.g., unigram), generated strings do not 

recognisably resemble strings in the corpus, while at 

very high orders, strings from the corpus are just 

replicated. 

An interesting “compromise” between the two 

approaches is found in more recent works of Cope 

(1991). Cope uses grammatical generation system 

combined with what he calls “signatures”, melodic 

micro- gestures common to individual composers. By 

identifying and reusing such signatures, Cope is able 

to reproduce the style of past composers in reportedly 

impressive ways. 

 

Predictive Theories in Music 

Following the work of Meyer (1957) it is commonly 

admitted that musical perception is guided by 

expectations based on the recent past context. 

                                                             
1
 An n-gram is a sequence of symbols of length n. 

The first n-1 of these are the context. 



Predictive theories are often related to specific 

stochastic models which estimate the probability for 

musical elements to appear in a given musical 

context, such as Markov chains mentioned above. If 

one is dealing with a data sequence whose 

probabilistic model is known, then one can optimally 

predict the next samples in the sequence. If one does 

not know the model, there are two possible solutions. 

One is to estimate the model first and use it for 

prediction. The second approach is to use a predictor 

that works well for every model or at least works as 

good as any other predictor from a limited class of 

prediction methods.  

In music applications the model is unknown. 

Considering the context or the past samples for 

prediction, one of the main problems is that the 

length of musical context (size of memory) is highly 

variable, ranging from short figurations to longer 

motifs. Taking a large fixed context makes the 

parameters difficult to estimate and the 

computational cost grows exponentially with the size 

of the context. In order to cope with this problem one 

must design a predictor that can deal with arbitrary 

observation sequence and is competitive to a rather 

large class of predictors, such as Finite State Machine 

Predictors and Markov Predictors. Philosophically, 

we take an agnostic approach: do the best we can 

relative to a restricted class of strategies. 

Finite State Prediction 

In order to describe the theory of prediction for a 

completely arbitrary data model we need to define 

the concept of finite-state predictor. Let us define a 

set S and two functions AASf !":  and 

SASg !": , such that the predictions 
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The initial state 
0
s is given as well. In the finite state 

(FS) predictor the predicted value depends only on 

the current state 
i
s  according to the prediction 

function f . For each new observation the machine 

moves to a new state according to the transition rule 

g . The error between a sequence of predictions and 

the actual data is defined by  
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otherwise. The minimal fraction of errors for an S-

state predictor is called “S-state predictability” and is 

denoted by )( 1

n

S
x! . If we want to consider the 

performance of FS predictor for increasing S, the 

length of the sequence must be increased. Growing n 

first and S second, FS predictability is defined as 
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FS predictors are examined in detail in Feder et al. 

(1992). They consider the problem of constructing a 

universal predictor that performs as well as any finite 

state predictor. By definition, )(x! depends on the 

particular sequence x. The surprising result is that a 

sequential predictor can be found that does not 

depend on x and yet achieves asymptotically FS 

predictability )(x! . Similarly, when the class of FS 

predictors is further confined to Markov predictors
2
 

then the corresponding prediction performance 

measure is called Markov predictability. It is further 

shown by Feder et al. (1992) that the finite-state 

predictability and the Markov predictability are 

always equivalent, which means that is is dufficient 

to confine attention to markov predictors in order to 

achieve the finite-state predictability. For a treatment 

of nonparametric universal prediction theory the 

reader is invited to consult also additional references 

Blackwell (1954), Hannan (1957).  

In our work we present a dictionary-based prediction 

method, which parses an existing musical text into a 

lexicon of phrases/patterns, called motifs, and 

provides an inference method for choosing the next 

musical object following a current past context. The 

parsing scheme must satisfy two conflicting 

constraints. On the one hand, one wants to maximally 

increase the dictionary to achieve better prediction, 

but on the other hand, enough evidence must be 

gathered before introducing a new phrase, so that a 

reliable estimate of the conditional probability is 

obtained. The secret of dictionary-based prediction 

(and compression) methods is that they cleverly 

sample the data so that most of the information is 

reliably represented by few selected phrases. This 

could be contrasted to Markov models that build 

large probability tables for the next symbol at every 

context entry. Although it might seem that the two 

methods operate in a different manner, it is helpful to 

understand that basically they employ similar 

statistical principles.  

Predictability and Compression 

The preceding discussion might seem needlessly 

complicated to someone current in compression and 

coding methods. It is widely known that prediction 

serves as the basis for modern data compression and 

it seems just natural that an opposite analogy would 

exist, i.e. a good compression method would be also 

useful for a good predictor. A standard measure for 

compression quality is coding redundance or how 

close the entropy of the coded sequence approaches 

the entropy of the data source. Intuitive link between 
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predictability and entropy is easy to establish. 

Entropy (also sometimes called "uncertainty") 

measures the minimal number of bits needed to 

describe a random event. For a completely random, 

i.i.d binary sequence, one must transmit all bits in 

order to describe the sequence. If the probability for 

ones is greater then for zeros (or vice versa), one can 

devise a scheme where long sequences of ones are 

assigned to short codewords, thus saving on the total 

number of bit, i.e. achieving on the average less then 

one bit per symbol.  The entropy function )( pH  for 

a sequence with probability p to see "1" is given by  

)}1log()1(log{)( pppppH !!+!=
  

Predictability on the other hand measures the 

minimum fraction of errors that can be made by some 

prediction machine over long data sequences. For 

instance, optimal single state predictor employs 

counts )0(
n
N and )1(

n
N of zeros and ones occur 

along the sequence 
n
x
1

. It predicts "0" if  

)1()0(
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NN > and "1" otherwise. The 

predictability of this scheme is 
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where }1,0{)( !xxN
n  is the joint count of ones 

and zeros occurring along the sequence 
n
x
1
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Comparing the behaviour of prediction to entropy is 

best demonstrated in the following graph: 

 

H and ! drawn as a function of the probability p . 

 

The predictability is related to the error probability in  

guessing the outcome of a variable, while the 

compressibility is related to its entropy. It can be 

further shown that a lower limit to predictability exist 

in terms of the entropy. For the binary case discussed 

above, it can be shown that )(2/ 1 !"! #$$ h , 

where ! is the compressibility, ! is the 

predictability and h(.) is the biary entropy function. 

While the two quantities are not functionally 

dependent, it is evident that they do coincide on the 

extreme points.  

Predictability and Complexity 

We will terminate this long introductory section by a 

brief discussion of relations between predictability 

and some other complexity measures. As we stressed 

in the beginning, one of the great advantages of the 

universal method is its applicability to arbitrary 

sequences, including deterministic sequences. The 

complexity of sequences that are not governed by a 

probabilistic model (sometimes called “individual” 

sequences) can be considered in terms of the 

Solomonoff-Kolmogorov-Chaitin complexity. This 

measure defines complexity of a sequence as the 

length of a shortest program for a universal Turing 

machine that outputs the sequence. In the same spirit 

we have a complexity definition by Lempel Ziv who 

considered the shortest code needed to reproduce an 

individual sequence by an FS encoder.  Their well-

known Lempel-Ziv algorithm (LZ’78) has been 

shown to achieve finite-state compressibility for 

every sequence. The details of the LZ incremental 

parsing algorithm, that will serve as the basis for our 

prediction method, will be discussed below. Feder et 

al. (1992) prove that in a similar manner to the 

compression property of the incremental parsing 

method, a predictor which uses the conditional 

probabilities induced by the LZ scheme attains 

Markovian predictability and this FS predictability 

for any individual sequence.   

2. Dictionary-based prediction 

As we have explained above, we use dictionary based 

methods for assessing the probability of the next 

sample given its context. In the following sections we 

will describe in detail the parsing algorithm and its 

application to stylistic music generation.  

Incremental Parsing 

We chose to use an incremental parsing (IP) 

algorithm suggested by Lempel and Ziv [LZ78]. IP 

builds a dictionary of distinct motifs by sequentially 

adding every new phrase that differs by a single next 

character from the longest match that already exists 

in the dictionary. For instance, given a text 

{ababaa…}, IP parses it into {a,b,ab,aa,…} where 

motifs are separated by commas. The dictionary may 

be represented as a tree (see last section). 

Probability Assignment 

Assigning conditional probability )|(ˆ
11

n

n

LZ
xxp + of 

a symbol 
1+nx  given 

n
x
1

 as context is done 

according to the code lengths of the Lempel Ziv 

compression scheme. Let c(n) be the number of 

motifs in the parsing of an input n-sequence. Then, 

log(c(n)) bits are needed to describe each prefix (a 

motif without its last character), and 1 bit to describe 

the last character (in case of a binary alphabet). For 

example, the code for the above sequence is 

(00,a),(00,b),(01,b),(01,a) where the first entry of 

each pair gives the index of the prefix and the second 



entry gives the next character. Ziv and Lempel have 

shown that the average code length c(n)log(c(n))/n 

converges asymptotically  to the entropy of the 

sequence with increasing n. This proves that the 

coding is optimal. Since for optimal coding the code 

length is 1/probability, and since all code lengths are 

equal, we may say that, at least in the long limit, the 

IP motifs have equal probability.  

 

Thus, taking equal weight for nodes in the tree 

representation, 
)|(ˆ

11

n

n

LZ
xxp +  will be deduced as a 

ratio between the cardinality of the subtrees (number 

of subnodes) following the node
n
x
1 .  As the number 

of subnodes is also the node's share of the probability 

space (because one codeword is allocated to each 

node), we see that the amount of code space allocated 

to a node is proportional to the number of times it 

occurred.  

In our example, the probability on the arc from the 

root node to {a} is 3/4, root to {b} is 1/4, probability 

from node {a} to {aa} is 1/2 and from {a} to {ab} is 

1/2.  

Seen in the bin representation, the probabilities are 

simply the relative portion of counts of characters 

},{),( baxxN
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!  appearing in bin with label c, 

giving )()(
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Sometimes a corrected count is preferred, 

considering the probability for a next symbol x to 

enter a current bin, giving 2)()(

1)(

++

+

bNaN

xN

cc

c

. 

This is equivalent, in the tree representation, to 

adding the count of a current node to cardinality of 

the subtrees in every direction. For large counts, the 

two probabilities are very close. 

Growing the context in IP v.s. Markov models 

An interesting relation between Lempel-Ziv and 

Markov models was discovered by [WIL91] when 

considering the length of the context used for 

prediction. In IP every prediction is done in the 

context of earlier prediction, thus resulting in a 

“sawtooth” behavior of the context length. For every 

new phrase the first character has no context, the 

second has context of length one, and so on.  In 

contrast, the Markov algorithm makes predictions 

using a totally flat context line determined by the 

order of the model. Thus, while a Markov algorithm 

makes all of its prediction based on 3- or 4-character 

contexts, the IP algorithm will make some of the 

predictions from lower depth, but very quickly it will 

exceed the Markov constant depth and use a better 

context. To compensate for its poor performance in 

the first characters, IP grows a big tree that has the 

effect  of increasing the average length of the phrase 

so that beginnings of the phrase occur less often. As 

the length of the input increases to infinity, so does 

the average length, with the startling effect that at 

infinity it converges to the entropy of the source. In 

practice though, the average phrase length does not 

rise fast enough to provide for reliable short-time 

predictions. On the other hand, it behaves 

surprisingly well for long sequences.  Our 

experiments show that this IP scheme, along with the 

appropriate linear representation of music, provides 

with patterns and inferences that successfully match 

musical expectation. 

Another important feature of the dictionary-based 

methods is that they are "universal". If the model of 

the data sequence was known ahead of time, an 

optimum prediction could be achieved at all times. 

The difficulty with most real situations is that the 

probability model for the data is unknown. Therefore 

one must use a predictor that works well no matter 

what the data model is. This idea is called "universal 

prediction" and it is contrasted to Markov predictors 

that assume a given order of the data model. 

Universal prediction algorithms make minimal 

assumptions on the underlying stochastic sources of 

musical sequences. Thus, they can be used in a great 

variety of musical and stylistic situations. Our IP 

based predictor is one such example of universal 

predictor. This differs also from knowledge-based 

systems, where specific knowledge about a particular 

style has to be first understood and implemented 

[COP96]. 

3. The Incremental Parsing (IP) algorithm 

The IPMotif function computes an associative 

dictionary (the motif dictionary) containing motifs 

discovered over a text. 
Parameter text, a list of objects 

dict = new dictionary 
motif = () 
While text is not empty 
 motif = motif ! pop (text) 
 If motif belongs to dict  
  Then value(dict,motif)++ 
  Else add motif to dict with value 
1 

    motif = () 
return dict 

dict is a set of pairs (key, value) where the keys are 

motifs and values are integer counters. text and 

motif are ordered lists of untyped objects (we don’t 

restrict to characters). value(dict,motif) 

retrieves the value associated with motif in dict. 

W!k notates the list obtained by right-appending 

object k to list W. Pop(var) returns the leftmost 

element from the list pointed to by var and advances 

var by one position to the right. 

The text is processed linearly from left to right, 

object after object, without any backtracking or look-

ahead. At any current time, the variable motif 

contains the current motif W being discovered and 

the variable text contains the remaining text, 

beginning just after W. Now a new object k is 



popped from the text and appended to the right of 

motif, which value changes to W!k. If  W!k is not 

already in the dictionary, it is added to it and motif 

is reset to an empty list (), thus being prepared to 

receive the next motif. The LZ78 compression 

algorithm would, at that time, output a codeword for 

W, depending on W's index in the dictionary, along 

with the object k. Compression would occur because 

W, which must have been previously encountered, is 

now output as a simple code.  But since we are not 

concerned with compression, we do nothing more. If 

W!k is already in the dictionary, we increment the 

counter associated with it and iterate. By doing this, 

we compute for each motif W!k the frequency at 

which  object k follows motif W in the text. It is an 

IP property that, if motif W is in the dictionary, then 

all its left prefixes are there. So, if for instance motifs 

ABC, ABCD, ABCE, ABCDE, are discovered at 

different places, the frequency of C following AB 

will be equal to 4. Another way to look at it is to 

consider that, for each motif W in the dictionary, for 

which there exists other motifs W!ki in the 

dictionary, we will easily get the (empirical) 

conditional probability distribution P(ki | W) 

(probability of occurrence of ki knowing that W has 

just occurred).  

In order to achieve this, we have to transform the 

motif dictionary into another one, called a 

continuation dictionary, where each key will be a 

motif W from the previous dictionary, and the 

corresponding value will be a list of couples 

(.. (k, P(k | W)) ..) for each possible k in the object 

alphabet, representing in effect  the empirical 

distribution of objects following W. 

The IPContinuation function computes a 

continuation dictionary from a motif dictionary. 
Parameter dict1, a dictionary 
dict2 = new dictionary. 
For each pair (W!k, counter) in dict1 

 If W belongs to dict2 
  Then value(dict2,W) = 

     value(dict2,W) !(k counter) 
  Else add W to dict2 
     with value ( (k counter) ) 
Normalize (dict2) 
Return dict2 

The function Normalize turns the counters in 

every element of dict2 into probabilities. 

Exemple 
Text  =( a b a b a b c a b d a b c d a b c e) 

Motif dictionary =  { ((a) 6) ((b) 1) ((a b) 5)  ((a b c) 

3)  ((a b d) 1)  ((a b c d) 1)  ((a b c e) 1) } 

Continuation dictionary = { ((a) ((b 1.0))) ((a b) ((c 

0.75 ) (d0.25)) ((a b c) ((d 0.5) (e 0.5)) } 

As can be seen in the previous example, a single pass 

IP analysis on a short text is not sufficient to detect a 

significant amount of motifs. There is no information 

on continuations for motif b or motif ba. Due to the 

asymptotic nature of IP, these motifs will eventually 

appear when analyzing long texts. Another way to 

increase redundancy and to detect more motifs is to 

parse several times the same text using the same 

motif dictionary, rotating each  time the text to the 

left by one position. 

The IPGenerate  function generates a new text from 

a continuation dictionary. Suppose we have already 

generated  a text (a0 a1 … an-1). There is a parameter p 

which is an upper limit on the size of the past we 

want to consider in order to choose the next object. 

1. Current text is (a0 a1 … an-1) 

 context  = (an-p … an-1). 

2. Check if context is a motif in the continuation 

dictionary.   

3. If found, its associated value gives the probability 

distribution for the continuation. Make a choice 

with regard to this distribution and append the 

chosen object k to right of text.  

 text = text ! k. Iterate in 1.  

4. If context is not found in dictionary, shorten it by 

popping its leftmost object.  

 context = (an-p+1 … an-1). If motif becomes () 

generate a failure otherwise iterate in 2. 

5. Upon failure either stop or append a random object 

to text, then iterate in 1. 

4. Resolving the polyphonic problem 

The IPGenerate  algorithm works on any linear 

stream of objects. It was successfully tested on linear 

streams of midi pitches from solo pieces or isolated 

voices of polyphonic pieces. In order to be able to 

process polyphony, thus fully capturing rythmical, 

countrapuntal and harmonic gestures, we had to find 

a way to linearize multivoice midi data in a way that 

would musically make sense and take advantage of 

the IP scheme. The best results were  achieved  by 

using a variant of the superposition languages 

defined by Chemillier & Timis [CHE90]. 

To understand this, take the 2-voice example shown 

below.  

 
Only the rhythm is notated. Pitch, as well as other 

relevant information are coded with letters a through 

h. If we slice time with respect to the common time 

unit (the gcd of the durations, i.e. the eighth note) we 

may code the sequence using 2 parallel words: 
aabcdd 
effggh 

where the letter x in bold means the continuation of 

the previous (contiguous) letter x (which is either a 

beginning symbol or itself a continuation). In order to 

linearize, we go from the normal alphabet, 

augmented by continuation symbols, S = {a, b, c, .., 

a, b, c, ..} to the cross-alphabet SxS. Now the 

sequence is: (a,e) (a, f) (b, f) (c, g) (d, g) (d, h). 

In order to cope with any arbitrary time structure and 

to optimize the parsing, we use the following variant. 



 

 
Time is sliced at each event boundary occuring in 

any voice. A set of durations D = {d1,..d7} is thus 

built. Using the cross alphabet SxSxD we build the 

linear triplet sequence: (a, -, d1) (a, d, d2) (b, d, d3) (b, 

-, d4) (b, e, d5) (-, e, d6) (c, e, d7), where - denotes the 

empty symbol (musical rest).  

These triplets can easily be packed into 3 bytes 

numbers if we code only the pitches along with the 

durations. In order to optimize the duration alphabet, 

we quantize the original durations into a reasonable 

set of discrete rhythmic values. The idea is then 

easily generalized to n-voice polyphony. 

 

5. Experiments 

Once a multi-voice midi file is transformed into a 

linear text based on the cross alphabet, it is presented 

to the IPMotif/IPcontinuation algorithm. The 

resulting continuation dictionary can then be 

randomly walked by IPGenerate to build variants of 

the original music.  

The cross-alphabet representation used has proven to 

fit decisively into the IP framework. In particular, the 

continuation symbols encode the fact that certain 

notes, in certain contexts, have a certain probability 

of being sustained while other notes are playing on 

other voices. The result is that countrapuntal 

gestures, as well as harmonic patterns, tend to be 

generated in a realistic way with regard to the 

original. Another caracteristic of IP is that if not only 

one text but a set of different  texts are analyzed 

using the same motif dictionary, the generation will 

"interpolate" in a space constituted by this set. This 

interpolation is not a geometrical one, but rather goes 

randomly  from one model to another when there 

exists a common pattern of any length and a 

continuation from the second model is chosen instead 

the first one. 

IPGenerate has been tested, in normal and 

interpolation mode, over the set of 2-voices Bach 

Inventions, normalized for tonality and tempo. While 

the lack of overall harmonic control do not favors 

consistant harmonic progression in the resulting 

simulations, these should be seen as "infinite" 

streams where very interesting subsequences, show 

original and convincing counterpoint and harmonic 

patterns. 

On the Bach material, we have established 

empirically that 0 rotation of the original text would 

lead to a poor, unusable, continuation dictionary;  3-4 

rotations are optimal, in that whole phrases from the 

original may be generated; more rotations do not 

improve the generation quality. This is certainly due 

to the way phrases are built from combination of 

small motifs in this style of music. 

In the Jazz domain, a new piece by Jean-Rיmy 

Guedon, miniX,  has been created recently at Ircam 

by the French "Orchestre National de Jazz" with the 

assistance of Frederic Voisin. In this 20 mn piece, 

about half of the solo parts were IPGenerated and 

transcribed on the score. 

These experiments were carried-out using 

OpenMusic, a Lisp-based visual language for music 

composition [ASS99]. Some results are available at: 

http://www.ircam.fr/equipes/repmus. 
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