
HAL Id: hal-01161368
https://hal.science/hal-01161368v1

Submitted on 28 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Universal Prediction Applied to Stylistic Music
Generation

Shlomo Dubnov, Gérard Assayag

To cite this version:
Shlomo Dubnov, Gérard Assayag. Universal Prediction Applied to Stylistic Music Generation.
Springer; Assayag, G., Feichtinger, H.G., Rodrigues, J.F. Mathematics and Music, A Diderot Mathe-
matical Forum, pp.147-158, 2002. �hal-01161368�

https://hal.science/hal-01161368v1
https://hal.archives-ouvertes.fr

Universal Prediction Applied to Stylistic Music Generation
Gיrard Assayag (Ircam) , Shlomo Dubnov (Ben Gurion Univ.)

Abstract

Capturing a style of a particular piece or a composer is not an easy task. Several attempts to use machine

learning methods to create models of style have appeared in the literature. These models do not provide an

intentional description of some musical theory but rather use statistical techniques to capture regularities that are

typical of certain music experience. A standard procedure in this approach is to assume a particular model for the

data sequence (such as Markov model). A major difficulty is that a choice of an appropriate model is not evident

for music. In this paper, we present a universal prediction algorithm that can be apllied to an arbitrary sequence

regardless of its model. Operations such as improvisation or assistance to composition can be realised on the

resulting representation.

1. Introduction

Machine learning is the process of deriving a set of

rules from data examples. Being able to construct a

music theory from examples is a great challenge,

both intellectually, and as a means for a whole range

of new exciting applications. Such models can be

used for analysis and prediction, and, to a certain

extent, they can generate acceptable original works

that imitate the style of their masters, recreating a

certain aspect of music experience that was present in

the original data set. The process of composition is a

highly structured mental process. Although it is very

complex and hard to formalise, it is not completely

random. The task of this research is to try to capture

some of the regularity apparent in the composition

process by applying information theoretic tools to

this problem.

Mind-reading Machines

In early 50's at Bell Labs David Hagelbarger has built

a simple 8 state machine, whose purpose was to play

the "penny matching" game. The simple machine

tried to match the future choices of a human player

over a long sequence of random "head" or "tail"

choices. Mind-reading was done by looking at

similar patterns in opponent's past sequence that

would help predict the next guess. The achieved rate

of success was greater that 50%, since human choices

could not be completely random and analysing

patterns of previous choices could help foretell the

future.

Inspired by Hagelbarger's success, Shannon has built

a different machine with improved performance. An

account of Shannon's philosophy on mind-reading

machines can be found in [Shannon 1953].

It is important to note that if the model of the data

sequence was known ahead of time, an optimum

prediction could be achieved. The difficulty with

most real situations is that the probability model for

the data is unknown. Therefore one must use a

predictor that woks well no matter what data model

is. This idea is called "universal prediction".

Music Generation and Style Replication

Generative theory of music can be constructed by

explicitly coding music rules in some logic or formal

grammar (Cope 1987, Ebicoglu 1986, Lidov &

Gambura 1973). This approach is sometimes called

“expert system” or “knowledge engineering

approach”. A contrasting approach is the statistical

learning or empirical induction approach. Several

researchers have used probabilistic methods, notably

Markov models, to model music (Pinkerton 1956,

Brooks Jr. et al. 1993, Conklin and Witten 1995).

Pinkerton used a small corpus of diatonic major- key

nursery rhyme to learn a Markov model, which he

later used to generate nursery rhymes. Because he

used a small alphabet (seven symbols of the diatonic

scale and a tied note symbol), he was able to use a

high- order (long context) Markov model up to order

eight. Conklin and Witten (1995) used trigrams
1
 to

generate chorale melodies from parameters on a

corpus of Bach chorale melodies. A more recent

Markov model experiment was done by Brooks Jr. et

al. (1993). Like Conklin and Witten, they worked

with chorale melodies, and like Pinkerton, they

experimented with orders up to eight. Their corpus

was of 37 hymn tunes (giving perhaps 5,000 note

transitions). To capture similarities between pieces in

different keys (but the same mode), all pieces were

into C. The experiment showed that at very low

orders (e.g., unigram), generated strings do not

recognisably resemble strings in the corpus, while at

very high orders, strings from the corpus are just

replicated.

An interesting “compromise” between the two

approaches is found in more recent works of Cope

(1991). Cope uses grammatical generation system

combined with what he calls “signatures”, melodic

micro- gestures common to individual composers. By

identifying and reusing such signatures, Cope is able

to reproduce the style of past composers in reportedly

impressive ways.

Predictive Theories in Music

Following the work of Meyer (1957) it is commonly

admitted that musical perception is guided by

expectations based on the recent past context.

1
 An n-gram is a sequence of symbols of length n.

The first n-1 of these are the context.

Predictive theories are often related to specific

stochastic models which estimate the probability for

musical elements to appear in a given musical

context, such as Markov chains mentioned above. If

one is dealing with a data sequence whose

probabilistic model is known, then one can optimally

predict the next samples in the sequence. If one does

not know the model, there are two possible solutions.

One is to estimate the model first and use it for

prediction. The second approach is to use a predictor

that works well for every model or at least works as

good as any other predictor from a limited class of

prediction methods.

In music applications the model is unknown.

Considering the context or the past samples for

prediction, one of the main problems is that the

length of musical context (size of memory) is highly

variable, ranging from short figurations to longer

motifs. Taking a large fixed context makes the

parameters difficult to estimate and the

computational cost grows exponentially with the size

of the context. In order to cope with this problem one

must design a predictor that can deal with arbitrary

observation sequence and is competitive to a rather

large class of predictors, such as Finite State Machine

Predictors and Markov Predictors. Philosophically,

we take an agnostic approach: do the best we can

relative to a restricted class of strategies.

Finite State Prediction

In order to describe the theory of prediction for a

completely arbitrary data model we need to define

the concept of finite-state predictor. Let us define a

set S and two functions AASf !": and

SASg !": , such that the predictions
i
x
)

 for a

sequence
n
xxx ,,,

21
K are generated by the

following mechanism:

),(

)(

11 !!=

=

iii

ii

xsgs

sfx
)

The initial state
0
s is given as well. In the finite state

(FS) predictor the predicted value depends only on

the current state
i
s according to the prediction

function f . For each new observation the machine

moves to a new state according to the transition rule

g . The error between a sequence of predictions and

the actual data is defined by

),(),(
1

1

11 i

n

i

i

nn

n
xxnxxd
))

!
=

"
= #

where),(xx
)

! is the error count, i.e a Hamming

distance function that equals 0 iff xx
)

= and 1

otherwise. The minimal fraction of errors for an S-

state predictor is called “S-state predictability” and is

denoted by)(1

n

S
x! . If we want to consider the

performance of FS predictor for increasing S, the

length of the sequence must be increased. Growing n

first and S second, FS predictability is defined as

).(suplimlim)(1

n

sns
xx !! "#"#=

FS predictors are examined in detail in Feder et al.

(1992). They consider the problem of constructing a

universal predictor that performs as well as any finite

state predictor. By definition,)(x! depends on the

particular sequence x. The surprising result is that a

sequential predictor can be found that does not

depend on x and yet achieves asymptotically FS

predictability)(x! . Similarly, when the class of FS

predictors is further confined to Markov predictors
2

then the corresponding prediction performance

measure is called Markov predictability. It is further

shown by Feder et al. (1992) that the finite-state

predictability and the Markov predictability are

always equivalent, which means that is is dufficient

to confine attention to markov predictors in order to

achieve the finite-state predictability. For a treatment

of nonparametric universal prediction theory the

reader is invited to consult also additional references

Blackwell (1954), Hannan (1957).

In our work we present a dictionary-based prediction

method, which parses an existing musical text into a

lexicon of phrases/patterns, called motifs, and

provides an inference method for choosing the next

musical object following a current past context. The

parsing scheme must satisfy two conflicting

constraints. On the one hand, one wants to maximally

increase the dictionary to achieve better prediction,

but on the other hand, enough evidence must be

gathered before introducing a new phrase, so that a

reliable estimate of the conditional probability is

obtained. The secret of dictionary-based prediction

(and compression) methods is that they cleverly

sample the data so that most of the information is

reliably represented by few selected phrases. This

could be contrasted to Markov models that build

large probability tables for the next symbol at every

context entry. Although it might seem that the two

methods operate in a different manner, it is helpful to

understand that basically they employ similar

statistical principles.

Predictability and Compression

The preceding discussion might seem needlessly

complicated to someone current in compression and

coding methods. It is widely known that prediction

serves as the basis for modern data compression and

it seems just natural that an opposite analogy would

exist, i.e. a good compression method would be also

useful for a good predictor. A standard measure for

compression quality is coding redundance or how

close the entropy of the coded sequence approaches

the entropy of the data source. Intuitive link between

2
 Markov predictor of order k is FS predictor with
k
2 states where),,(1!!=

ikii
xxs K .

predictability and entropy is easy to establish.

Entropy (also sometimes called "uncertainty")

measures the minimal number of bits needed to

describe a random event. For a completely random,

i.i.d binary sequence, one must transmit all bits in

order to describe the sequence. If the probability for

ones is greater then for zeros (or vice versa), one can

devise a scheme where long sequences of ones are

assigned to short codewords, thus saving on the total

number of bit, i.e. achieving on the average less then

one bit per symbol. The entropy function)(pH for

a sequence with probability p to see "1" is given by

)}1log()1(log{)(pppppH !!+!=

Predictability on the other hand measures the

minimum fraction of errors that can be made by some

prediction machine over long data sequences. For

instance, optimal single state predictor employs

counts)0(
n
N and)1(

n
N of zeros and ones occur

along the sequence
n
x
1

. It predicts "0" if

)1()0(
nn
NN > and "1" otherwise. The

predictability of this scheme is

)}1(),0(min{
1

)(1 nn

n
NN

n
x =!

,

where }1,0{)(!xxN
n is the joint count of ones

and zeros occurring along the sequence
n
x
1

.

Comparing the behaviour of prediction to entropy is

best demonstrated in the following graph:

H and ! drawn as a function of the probability p .

The predictability is related to the error probability in

guessing the outcome of a variable, while the

compressibility is related to its entropy. It can be

further shown that a lower limit to predictability exist

in terms of the entropy. For the binary case discussed

above, it can be shown that)(2/ 1 !"! #$$ h ,

where ! is the compressibility, ! is the

predictability and h(.) is the biary entropy function.

While the two quantities are not functionally

dependent, it is evident that they do coincide on the

extreme points.

Predictability and Complexity

We will terminate this long introductory section by a

brief discussion of relations between predictability

and some other complexity measures. As we stressed

in the beginning, one of the great advantages of the

universal method is its applicability to arbitrary

sequences, including deterministic sequences. The

complexity of sequences that are not governed by a

probabilistic model (sometimes called “individual”

sequences) can be considered in terms of the

Solomonoff-Kolmogorov-Chaitin complexity. This

measure defines complexity of a sequence as the

length of a shortest program for a universal Turing

machine that outputs the sequence. In the same spirit

we have a complexity definition by Lempel Ziv who

considered the shortest code needed to reproduce an

individual sequence by an FS encoder. Their well-

known Lempel-Ziv algorithm (LZ’78) has been

shown to achieve finite-state compressibility for

every sequence. The details of the LZ incremental

parsing algorithm, that will serve as the basis for our

prediction method, will be discussed below. Feder et

al. (1992) prove that in a similar manner to the

compression property of the incremental parsing

method, a predictor which uses the conditional

probabilities induced by the LZ scheme attains

Markovian predictability and this FS predictability

for any individual sequence.

2. Dictionary-based prediction

As we have explained above, we use dictionary based

methods for assessing the probability of the next

sample given its context. In the following sections we

will describe in detail the parsing algorithm and its

application to stylistic music generation.

Incremental Parsing

We chose to use an incremental parsing (IP)

algorithm suggested by Lempel and Ziv [LZ78]. IP

builds a dictionary of distinct motifs by sequentially

adding every new phrase that differs by a single next

character from the longest match that already exists

in the dictionary. For instance, given a text

{ababaa…}, IP parses it into {a,b,ab,aa,…} where

motifs are separated by commas. The dictionary may

be represented as a tree (see last section).

Probability Assignment

Assigning conditional probability)|(ˆ
11

n

n

LZ
xxp + of

a symbol
1+nx given

n
x
1

 as context is done

according to the code lengths of the Lempel Ziv

compression scheme. Let c(n) be the number of

motifs in the parsing of an input n-sequence. Then,

log(c(n)) bits are needed to describe each prefix (a

motif without its last character), and 1 bit to describe

the last character (in case of a binary alphabet). For

example, the code for the above sequence is

(00,a),(00,b),(01,b),(01,a) where the first entry of

each pair gives the index of the prefix and the second

entry gives the next character. Ziv and Lempel have

shown that the average code length c(n)log(c(n))/n

converges asymptotically to the entropy of the

sequence with increasing n. This proves that the

coding is optimal. Since for optimal coding the code

length is 1/probability, and since all code lengths are

equal, we may say that, at least in the long limit, the

IP motifs have equal probability.

Thus, taking equal weight for nodes in the tree

representation,
)|(ˆ

11

n

n

LZ
xxp + will be deduced as a

ratio between the cardinality of the subtrees (number

of subnodes) following the node
n
x
1 . As the number

of subnodes is also the node's share of the probability

space (because one codeword is allocated to each

node), we see that the amount of code space allocated

to a node is proportional to the number of times it

occurred.

In our example, the probability on the arc from the

root node to {a} is 3/4, root to {b} is 1/4, probability

from node {a} to {aa} is 1/2 and from {a} to {ab} is

1/2.

Seen in the bin representation, the probabilities are

simply the relative portion of counts of characters

},{),(baxxN
c

! appearing in bin with label c,

giving)()(

)(

bNaN

xN

cc

c

+
.

Sometimes a corrected count is preferred,

considering the probability for a next symbol x to

enter a current bin, giving 2)()(

1)(

++

+

bNaN

xN

cc

c

.

This is equivalent, in the tree representation, to

adding the count of a current node to cardinality of

the subtrees in every direction. For large counts, the

two probabilities are very close.

Growing the context in IP v.s. Markov models

An interesting relation between Lempel-Ziv and

Markov models was discovered by [WIL91] when

considering the length of the context used for

prediction. In IP every prediction is done in the

context of earlier prediction, thus resulting in a

“sawtooth” behavior of the context length. For every

new phrase the first character has no context, the

second has context of length one, and so on. In

contrast, the Markov algorithm makes predictions

using a totally flat context line determined by the

order of the model. Thus, while a Markov algorithm

makes all of its prediction based on 3- or 4-character

contexts, the IP algorithm will make some of the

predictions from lower depth, but very quickly it will

exceed the Markov constant depth and use a better

context. To compensate for its poor performance in

the first characters, IP grows a big tree that has the

effect of increasing the average length of the phrase

so that beginnings of the phrase occur less often. As

the length of the input increases to infinity, so does

the average length, with the startling effect that at

infinity it converges to the entropy of the source. In

practice though, the average phrase length does not

rise fast enough to provide for reliable short-time

predictions. On the other hand, it behaves

surprisingly well for long sequences. Our

experiments show that this IP scheme, along with the

appropriate linear representation of music, provides

with patterns and inferences that successfully match

musical expectation.

Another important feature of the dictionary-based

methods is that they are "universal". If the model of

the data sequence was known ahead of time, an

optimum prediction could be achieved at all times.

The difficulty with most real situations is that the

probability model for the data is unknown. Therefore

one must use a predictor that works well no matter

what the data model is. This idea is called "universal

prediction" and it is contrasted to Markov predictors

that assume a given order of the data model.

Universal prediction algorithms make minimal

assumptions on the underlying stochastic sources of

musical sequences. Thus, they can be used in a great

variety of musical and stylistic situations. Our IP

based predictor is one such example of universal

predictor. This differs also from knowledge-based

systems, where specific knowledge about a particular

style has to be first understood and implemented

[COP96].

3. The Incremental Parsing (IP) algorithm

The IPMotif function computes an associative

dictionary (the motif dictionary) containing motifs

discovered over a text.
Parameter text, a list of objects

dict = new dictionary
motif = ()
While text is not empty
 motif = motif ! pop (text)
 If motif belongs to dict
 Then value(dict,motif)++
 Else add motif to dict with value
1

 motif = ()
return dict

dict is a set of pairs (key, value) where the keys are

motifs and values are integer counters. text and

motif are ordered lists of untyped objects (we don’t

restrict to characters). value(dict,motif)

retrieves the value associated with motif in dict.

W!k notates the list obtained by right-appending

object k to list W. Pop(var) returns the leftmost

element from the list pointed to by var and advances

var by one position to the right.

The text is processed linearly from left to right,

object after object, without any backtracking or look-

ahead. At any current time, the variable motif

contains the current motif W being discovered and

the variable text contains the remaining text,

beginning just after W. Now a new object k is

popped from the text and appended to the right of

motif, which value changes to W!k. If W!k is not

already in the dictionary, it is added to it and motif

is reset to an empty list (), thus being prepared to

receive the next motif. The LZ78 compression

algorithm would, at that time, output a codeword for

W, depending on W's index in the dictionary, along

with the object k. Compression would occur because

W, which must have been previously encountered, is

now output as a simple code. But since we are not

concerned with compression, we do nothing more. If

W!k is already in the dictionary, we increment the

counter associated with it and iterate. By doing this,

we compute for each motif W!k the frequency at

which object k follows motif W in the text. It is an

IP property that, if motif W is in the dictionary, then

all its left prefixes are there. So, if for instance motifs

ABC, ABCD, ABCE, ABCDE, are discovered at

different places, the frequency of C following AB

will be equal to 4. Another way to look at it is to

consider that, for each motif W in the dictionary, for

which there exists other motifs W!ki in the

dictionary, we will easily get the (empirical)

conditional probability distribution P(ki | W)

(probability of occurrence of ki knowing that W has

just occurred).

In order to achieve this, we have to transform the

motif dictionary into another one, called a

continuation dictionary, where each key will be a

motif W from the previous dictionary, and the

corresponding value will be a list of couples

(.. (k, P(k | W)) ..) for each possible k in the object

alphabet, representing in effect the empirical

distribution of objects following W.

The IPContinuation function computes a

continuation dictionary from a motif dictionary.
Parameter dict1, a dictionary
dict2 = new dictionary.
For each pair (W!k, counter) in dict1

 If W belongs to dict2
 Then value(dict2,W) =

 value(dict2,W) !(k counter)
 Else add W to dict2
 with value ((k counter))
Normalize (dict2)
Return dict2

The function Normalize turns the counters in

every element of dict2 into probabilities.

Exemple
Text =(a b a b a b c a b d a b c d a b c e)

Motif dictionary = { ((a) 6) ((b) 1) ((a b) 5) ((a b c)

3) ((a b d) 1) ((a b c d) 1) ((a b c e) 1) }

Continuation dictionary = { ((a) ((b 1.0))) ((a b) ((c

0.75) (d0.25)) ((a b c) ((d 0.5) (e 0.5)) }

As can be seen in the previous example, a single pass

IP analysis on a short text is not sufficient to detect a

significant amount of motifs. There is no information

on continuations for motif b or motif ba. Due to the

asymptotic nature of IP, these motifs will eventually

appear when analyzing long texts. Another way to

increase redundancy and to detect more motifs is to

parse several times the same text using the same

motif dictionary, rotating each time the text to the

left by one position.

The IPGenerate function generates a new text from

a continuation dictionary. Suppose we have already

generated a text (a0 a1 … an-1). There is a parameter p

which is an upper limit on the size of the past we

want to consider in order to choose the next object.

1. Current text is (a0 a1 … an-1)

 context = (an-p … an-1).

2. Check if context is a motif in the continuation

dictionary.

3. If found, its associated value gives the probability

distribution for the continuation. Make a choice

with regard to this distribution and append the

chosen object k to right of text.

 text = text ! k. Iterate in 1.

4. If context is not found in dictionary, shorten it by

popping its leftmost object.

 context = (an-p+1 … an-1). If motif becomes ()

generate a failure otherwise iterate in 2.

5. Upon failure either stop or append a random object

to text, then iterate in 1.

4. Resolving the polyphonic problem

The IPGenerate algorithm works on any linear

stream of objects. It was successfully tested on linear

streams of midi pitches from solo pieces or isolated

voices of polyphonic pieces. In order to be able to

process polyphony, thus fully capturing rythmical,

countrapuntal and harmonic gestures, we had to find

a way to linearize multivoice midi data in a way that

would musically make sense and take advantage of

the IP scheme. The best results were achieved by

using a variant of the superposition languages

defined by Chemillier & Timis [CHE90].

To understand this, take the 2-voice example shown

below.

Only the rhythm is notated. Pitch, as well as other

relevant information are coded with letters a through

h. If we slice time with respect to the common time

unit (the gcd of the durations, i.e. the eighth note) we

may code the sequence using 2 parallel words:
aabcdd
effggh

where the letter x in bold means the continuation of

the previous (contiguous) letter x (which is either a

beginning symbol or itself a continuation). In order to

linearize, we go from the normal alphabet,

augmented by continuation symbols, S = {a, b, c, ..,

a, b, c, ..} to the cross-alphabet SxS. Now the

sequence is: (a,e) (a, f) (b, f) (c, g) (d, g) (d, h).

In order to cope with any arbitrary time structure and

to optimize the parsing, we use the following variant.

Time is sliced at each event boundary occuring in

any voice. A set of durations D = {d1,..d7} is thus

built. Using the cross alphabet SxSxD we build the

linear triplet sequence: (a, -, d1) (a, d, d2) (b, d, d3) (b,

-, d4) (b, e, d5) (-, e, d6) (c, e, d7), where - denotes the

empty symbol (musical rest).

These triplets can easily be packed into 3 bytes

numbers if we code only the pitches along with the

durations. In order to optimize the duration alphabet,

we quantize the original durations into a reasonable

set of discrete rhythmic values. The idea is then

easily generalized to n-voice polyphony.

5. Experiments

Once a multi-voice midi file is transformed into a

linear text based on the cross alphabet, it is presented

to the IPMotif/IPcontinuation algorithm. The

resulting continuation dictionary can then be

randomly walked by IPGenerate to build variants of

the original music.

The cross-alphabet representation used has proven to

fit decisively into the IP framework. In particular, the

continuation symbols encode the fact that certain

notes, in certain contexts, have a certain probability

of being sustained while other notes are playing on

other voices. The result is that countrapuntal

gestures, as well as harmonic patterns, tend to be

generated in a realistic way with regard to the

original. Another caracteristic of IP is that if not only

one text but a set of different texts are analyzed

using the same motif dictionary, the generation will

"interpolate" in a space constituted by this set. This

interpolation is not a geometrical one, but rather goes

randomly from one model to another when there

exists a common pattern of any length and a

continuation from the second model is chosen instead

the first one.

IPGenerate has been tested, in normal and

interpolation mode, over the set of 2-voices Bach

Inventions, normalized for tonality and tempo. While

the lack of overall harmonic control do not favors

consistant harmonic progression in the resulting

simulations, these should be seen as "infinite"

streams where very interesting subsequences, show

original and convincing counterpoint and harmonic

patterns.

On the Bach material, we have established

empirically that 0 rotation of the original text would

lead to a poor, unusable, continuation dictionary; 3-4

rotations are optimal, in that whole phrases from the

original may be generated; more rotations do not

improve the generation quality. This is certainly due

to the way phrases are built from combination of

small motifs in this style of music.

In the Jazz domain, a new piece by Jean-Rיmy

Guedon, miniX, has been created recently at Ircam

by the French "Orchestre National de Jazz" with the

assistance of Frederic Voisin. In this 20 mn piece,

about half of the solo parts were IPGenerated and

transcribed on the score.

These experiments were carried-out using

OpenMusic, a Lisp-based visual language for music

composition [ASS99]. Some results are available at:

http://www.ircam.fr/equipes/repmus.

References
[ASS99] Assayag, Agon, Laurson, Rueda. Computer Assisted

Composition at Ircam: PatchWork & OpenMusic. Computer

Music Journal, to come,1999.

[CHEM90] Chemillier, M, Structure et mיthode algיbriques en

informatique musicale. Doctorat,LITP 90-4, Paris VI, 1990.

[COP96] Experiments in Musical intelligence. Madison, WI:A-R

Editions, 1996.

[LZ78] Ziv J, Lempel A, "Compression of individual sequences

via variable rate coding", IEEE Trans. Inf. The., 24:5, pp.530-536,

1978.

[WIL91] Williams, R.N, "Adaptive Data Compression", Kluwer

Academic Publishers, Norwell, Massachusetts, 1991.

D.Blackwell, “Controlled Random Walk”, in Proceedings of the

1954 International Congress of mathematics, Vol. III, pp. 336-338,

Amsterdam, Holland.

J.F.Hannan, “Approximation to Bayes Risk in Repeated Plays”, in

Contributions to the theory of Games, 39, pp: 97-139, Princeton

1957.

M.Feder, N.Merhav and M.Gutman, “Universal Prediction of

individual sequences”, IEEE transactions on Information Theory,

vol. 38, pp. 1258-1270, 1992.

Cope, D. (1991). Computers and musical style. Oxford University

Press.

Conklin, D. and Witten, I. (1995). Multiple viewpoint systems for

music prediction, Interface, 24, 51– 73.

Pinkerton, R. (1956). Information theory and melody. Scientific

American, (194), 76– 86.

Brooks Jr., F., Hopkins Jr., A., Neumann, P., and Wright, W.

(1993). An experiment in musical composition, In Schwanauer and

Levitt, editors, Machine Models of Music, pages 23– 40. MIT

Press.

Cope, D. (1987) An expert system from computer-assisted

composition, in Computer Music Jouranl, 11(4): pp. 30-46.

Ebicoglu, K. (1986), An Expert System for Harmonization of

Chorals in the style of J.S.Bach, PhD Dissertation, Department of

Computer Science, SUNY at Biuffalo.

Lidov,D. and Gambura, J. (1973), A melody writing algorithm

using a formal language model, in Computer Studies in

Humanities, 4(3-4), pp. 134-148.

