Sub-Riemannian curvature in contact geometry - Archive ouverte HAL
Article Dans Une Revue Journal of Geometric Analysis Année : 2016

Sub-Riemannian curvature in contact geometry

Résumé

We compare different notions of curvature on contact sub-Riemannian manifolds. In particular we introduce canonical curvatures as the coefficients of the sub-Riemannian Jacobi equation. The main result is that all these coefficients are encoded in the asymptotic expansion of the horizontal derivatives of the sub-Riemannian distance. We explicitly compute their expressions in terms of the standard tensors of contact geometry. As an application of these results, we obtain a sub-Riemannian version of the Bonnet-Myers theorem that applies to any contact manifold.
Fichier principal
Vignette du fichier
ContactCurv v11.pdf (389.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01160901 , version 1 (04-11-2015)
hal-01160901 , version 2 (08-12-2015)
hal-01160901 , version 3 (21-02-2016)

Identifiants

Citer

Andrei Agrachev, Davide Barilari, Luca Rizzi. Sub-Riemannian curvature in contact geometry. Journal of Geometric Analysis, 2016, ⟨10.1007/s12220-016-9684-0⟩. ⟨hal-01160901v3⟩
489 Consultations
419 Téléchargements

Altmetric

Partager

More