Sub-Riemannian curvature in contact geometry - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Sub-Riemannian curvature in contact geometry

Résumé

We compare different notions of curvature on contact sub-Riemannian manifolds. In particular we introduce canonical curvatures as the coefficients of the sub-Riemannian Jacobi equation. The main result is that all these coefficients are encoded in the asymptotic expansion of the horizontal derivatives of the sub-Riemannian distance. We explicitly compute their expressions in terms of the standard tensors of contact geometry. As an application of these results, we obtain a sub-Riemannian version of the Bonnet-Myers theorem that applies to any contact manifold.
Fichier principal
Vignette du fichier
1505.04374v2.pdf (394.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01160901 , version 1 (04-11-2015)
hal-01160901 , version 2 (08-12-2015)
hal-01160901 , version 3 (21-02-2016)

Identifiants

Citer

Andrei Agrachev, Davide Barilari, Luca Rizzi. Sub-Riemannian curvature in contact geometry. 2015. ⟨hal-01160901v1⟩
489 Consultations
419 Téléchargements

Altmetric

Partager

More