Sub-Riemannian curvature in contact geometry - Archive ouverte HAL
Journal Articles Journal of Geometric Analysis Year : 2016

Sub-Riemannian curvature in contact geometry

Abstract

We compare different notions of curvature on contact sub-Riemannian manifolds. In particular we introduce canonical curvatures as the coefficients of the sub-Riemannian Jacobi equation. The main result is that all these coefficients are encoded in the asymptotic expansion of the horizontal derivatives of the sub-Riemannian distance. We explicitly compute their expressions in terms of the standard tensors of contact geometry. As an application of these results, we obtain a sub-Riemannian version of the Bonnet-Myers theorem that applies to any contact manifold.
Fichier principal
Vignette du fichier
ContactCurv v11.pdf (389.33 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01160901 , version 1 (04-11-2015)
hal-01160901 , version 2 (08-12-2015)
hal-01160901 , version 3 (21-02-2016)

Identifiers

Cite

Andrei Agrachev, Davide Barilari, Luca Rizzi. Sub-Riemannian curvature in contact geometry. Journal of Geometric Analysis, 2016, ⟨10.1007/s12220-016-9684-0⟩. ⟨hal-01160901v3⟩
498 View
426 Download

Altmetric

Share

More