A deterministic approximation method in shape optimization under random uncertainties - Archive ouverte HAL
Article Dans Une Revue SMAI Journal of Computational Mathematics Année : 2015

A deterministic approximation method in shape optimization under random uncertainties

Résumé

This paper is concerned with the treatment of uncertainties in shape optimization. We consider uncertainties in the loadings, the material properties, the geometry and the vibration frequency, both in the parametric and geometric optimization setting. We minimize objective functions which are mean values, variances or failure probabilities of standard cost functions under random uncertainties. By assuming that the uncertainties are small and generated by a finite number N of random variables, and using first-or second-order Taylor expansions, we propose a deterministic approach to optimize approximate objective functions. The computational cost is similar to that of a multiple load problems where the number of loads is N. We demonstrate the effectiveness of our approach on various parametric and geometric optimization problems in two space dimensions.
Fichier principal
Vignette du fichier
randomshapeop6.pdf (11.8 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01160256 , version 1 (09-06-2015)

Identifiants

Citer

Grégoire Allaire, Charles Dapogny. A deterministic approximation method in shape optimization under random uncertainties. SMAI Journal of Computational Mathematics, 2015, 1, pp.83-143. ⟨10.5802/smai-jcm.5⟩. ⟨hal-01160256⟩
602 Consultations
344 Téléchargements

Altmetric

Partager

More