Logistic Similarity Metric Learning for Face Verification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Logistic Similarity Metric Learning for Face Verification

Résumé

This paper presents a new method for similarity metric learning , called Logistic Similarity Metric Learning (LSML), where the cost is formulated as the logistic loss function, which gives a probability estimation of a pair of faces being similar. Especially, we propose to shift the similarity decision boundary gaining significant performance improvement. We test the proposed method on the face verification problem using four single face descriptors: LBP, OCLBP, SIFT and Gabor wavelets. Extensive experimental results on the LFW-a data set demonstrate that the proposed method achieves competitive state-of-the-art performance on the problem of face verification.
Fichier principal
Vignette du fichier
Liris-7045.pdf (73.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01158949 , version 1 (02-06-2015)

Identifiants

  • HAL Id : hal-01158949 , version 1

Citer

Lilei Zheng, Khalid Idrissi, Christophe Garcia, Stefan Duffner, Atilla Baskurt. Logistic Similarity Metric Learning for Face Verification. 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2015, Apr 2015, Brisbane, Australia. ⟨hal-01158949⟩
245 Consultations
872 Téléchargements

Partager

More