High Order $C^0$-Continuous Galerkin Schemes for High Order PDEs, Conservation of Quadratic Invariants and Application to the Korteweg-de Vries Model - Archive ouverte HAL
Article Dans Une Revue Journal of Scientific Computing Année : 2018

High Order $C^0$-Continuous Galerkin Schemes for High Order PDEs, Conservation of Quadratic Invariants and Application to the Korteweg-de Vries Model

Résumé

We address the Korteweg-de Vries equation as an interesting model of high order partial differential equation, and show that it is possible to develop reliable and effective schemes, in terms of accuracy, computational efficiency, simplicity of implementation and, if required, conservation of the lower invariants, on the basis of a (only) $H^1$-conformal Galerkin approximation, namely the Spectral Element Method. The proposed approach is {\it a priori} easily extensible to other partial differential equations and to multidimensional problems.
Fichier principal
Vignette du fichier
MP_16_FINAL_HAL.pdf (511.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01158007 , version 1 (29-05-2015)
hal-01158007 , version 2 (05-11-2019)

Identifiants

Citer

Sebastian Minjeaud, Richard Pasquetti. High Order $C^0$-Continuous Galerkin Schemes for High Order PDEs, Conservation of Quadratic Invariants and Application to the Korteweg-de Vries Model. Journal of Scientific Computing, 2018, 74 (1), pp.491-518. ⟨10.1007/s10915-017-0455-2⟩. ⟨hal-01158007v2⟩
490 Consultations
396 Téléchargements

Altmetric

Partager

More