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Abstract We address the Korteweg-de Vries equation as an interesting model of high
order partial differential equation, and show that it is possible to develop reliable and
effective schemes, in terms of accuracy, computational efficiency, simplicity of im-
plementation and, if required, conservation of the lower invariants, on the basis of a
(only) H1-conformal Galerkin approximation, namely the Spectral Element Method.
The proposed approach is a priori easily extensible to other partial differential equa-
tions and to multidimensional problems.
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1 Introduction

As now well known, the spectral element method (SEM) allows a high order approx-
imation of partial differential equations (PDE) and combines the advantages of spec-
tral methods, that is accuracy and rapid convergence, with those of the finite element
method (FEM), that is geometrical flexibility, see e.g. [13,19,24,31,37]. The SEM is
based on a nodal Continuous Galerkin (CG) approach, such that the approximation
space contains all C0 functions whose restriction in each element is a polynomial of
degree N. More precisely, in each element, the basis functions are Lagrange polyno-
mials associated to the Gauss-Lobatto-Legendre (GLL) points which are also used as
quadrature points to evaluate integrals derived using a weak form of the problem. An
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important consequence of this choice for interpolation and integration points is that
the resulting mass matrix is diagonal. Thus, the same approach is sometimes called
“Gauss-point mass lumped finite element scheme” in the finite element literature [16].
Till now, the fact that the SEM mass matrix is diagonal was mainly exploited to ad-
dress evolution problems with an explicit time marching, with applications e.g. to the
wave equation or to the Euler system. Here we use this property to systematically
define high order differentiation operators and thus to address dispersive equations.

The efficiency of the SEM is well established for the elliptic or parabolic PDEs,
whose solutions are in general smooth. Indeed, many papers describing numerical
studies carried out with the SEM are published in the literature, see for instance the
papers associated to the ICOSAHOM conference series. Also, following the pio-
neering code NEKTON developed in the late 80’s, parallel softwares like NEKTAR
(Imperial College and University of Utah [12]), NEK5000 (Argonne national labo-
ratory [23]) or SPECULOOS (EPFL, Lausanne [20]) make use of the SEM and are
routinely used to compute a large variety of problems, e.g. , diffusion phenomena,
electromagnetism, fluid flows, turbulent flows etc... A fine analysis of the efficiency
of the SEM, taking into account the computational cost, is e.g. carried out in [48],
and an interesting parallel between continuous and discontinuous Galerkin method
for two-dimensional elliptic problems can be found in [32]. However, when dealing
with hyperbolic PDEs, stability problems may be encountered, since, roughly speak-
ing, spectral approximations are centered and much less numerically diffusive than
low-order ones. Efficient stabilization techniques are then needed, e.g. the variational
multiscale method [28], the entropy viscosity method [26] or the spectral vanishing
viscosity (SVV) technique [46].

Similarly, extending the SEM approach to dispersive problems has not yet re-
ceived a great attention and applying the SEM to, e.g. , third or higher odd-order
equations, remains nontrivial. As a relevant example of such problems we consider
the Korteweg-de Vries (KdV) equation, which is well known to point out the dis-
persive effects that may occur for weakly non-linear water waves or collisionless
plasmas, and to provide a simple evidence of the existence of solitons, see e.g. [39]
and references herein. With t ∈ R+ and x ∈ Ω = (xmin,xmax) for the time and space
variables, the KdV PDE may write:

∂tu+u∂xu+β∂xxxu = 0 , (1)

and should be completed with an initial condition u0(x) = u(x,0), x ∈ Ω , and
e.g. periodic boundary conditions. Many numerical methods have been proposed
to compute approximate solutions of (1). The existing techniques include finite-
difference methods [44,56], spectral methods [45], finite-element methods [4,6,43,
50], and more recently finite volume methods [18,21] or discontinuous Galerkin
(DG) methods [7,42,54,55]. In the frame of FEMs, third (or higher) order derivative
terms raise some difficulties. When thinking to the standard P1 FEM, i.e. when using
a piecewise linear approximation, it is indeed clear that the second order derivative
vanishes in each element, so that it is e.g. required to use C1 continuous finite ele-
ments or a Petrov-Galerkin approach with C1 test functions, but at the price of an
additional complexity of the algorithm especially when one has in mind high order
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approximations or multi-dimensional problems. In this article, we want to show that
a high order approximation can be obtained on the basis of C0 finite elements and
propose approaches that remain simple to implement. Moreover, we focus on the
preservation of invariants, which is particularly non trivial when high order methods
are concerned.

This paper is organized as follows. In Section 2 we first discuss the space dis-
cretization for the KdV problem on the basis of the SEM approximation. Two differ-
ent strategies are introduced to handle the third order derivative term: the first one may
be considered as natural to avoid using C1 finite elements, and the second one as the
most general to approximate high order derivative terms with C0 finite elements. The
treatment of the non-linear transport term is also described. The time discretization
is discussed in Section 3. Because the preservation of PDE’s invariants is generally
important, the preservation of the lower invariants of the KdV equation is examined.
Here also, two approaches are proposed and carefully detailed. Finally, in Section 4,
we experiment the different schemes and algorithms presented in the paper.

2 Space discretization

We first focus on the discretization of the third order derivative term in Section 2.1
and show how to handle boundary conditions in Section 2.2. The discretization of the
non-linear transport term is then detailed in Section 2.3.

2.1 Treatment of the third order term

As explained in the introduction, the space discretization is based on the SEM, so that
the solution is sought in the space Eh ⊂ H1 (usual notation is used for the Sobolev
space H1) of all C0 functions whose restriction in each element is a polynomial of de-
gree N. Then, the scheme is basically obtained using a weak formulation against test
functions belonging to the space Eh. Unfortunately, the approximation space Eh is
not embedded in the Sobolev space H2. It raises a difficulty when considering weak
formulations associated to a third (or higher) order term, since neither the solution
nor the test functions can accept two space derivatives. The basic idea we exploit
to overcome this difficulty consists in redefining the first or second order derivative,
such that they still belong to the approximation space Eh. This may be interpreted
as introducing additional unknowns (belonging to Eh) that allow to decrease the dif-
ferential order in the weak formulation. Of course, this idea is not new, see e.g. [27,
50] for KdV, but with the SEM the key point lies in the fact that the intermediate
unknowns can be easily eliminated since the mass matrix is diagonal (recall that the
SEM makes use of the same points for interpolation and quadrature rules).

Hereafter, we focus on the space discretization of the third order term, so that we
consider the following toy PDE:

∂tu+β∂xxxu = 0 , (2)



4 Sebastian Minjeaud, Richard Pasquetti

that we associate to an initial condition and to periodic boundary conditions. Periodic-
ity is often assumed for the sake of simplicity: As e.g. mentioned in [36], for another
variant of the FEM, namely the Local DG (LDG), it is straightforward to enforce
other types of boundary conditions as long as the initial-boundary value problem is
well posed. To be more precise, in Section 2.2 we however give some details on the
resolution of (2) in a finite domain.

Two strategies, that do not suffer from an increase of the number of unknowns
and that preserve the high order accuracy of the SEM, are now described.

2.1.1 Strategy A: H1-approximation of second derivative

The most natural idea consists in introducing f = ∂xxu so that, instead of (2), we
address the system

∂tu+β∂x f = 0 ,
f = ∂xxu .

This system can now be handled by the CG approach and the semi-discrete problem
writes: Find uh, fh : R+→ Eh such that for any time t∫ xmax

xmin

∂tuhvhdx+β

∫ xmax

xmin

∂x fhvhdx = 0 , ∀vh ∈ Eh , (3)∫ xmax

xmin

fhvhdx+
∫ xmax

xmin

∂xuh∂xvhdx = 0 , ∀vh ∈ Eh . (4)

In algebraic form, one should then consider the system:

M∂tU +βDF = 0,
MF +BU = 0.

The mass matrix M and the matrices D and B write:

Mi j ≈
∫ xmax

xmin

ϕiϕ j dx , Di j =
∫ xmax

xmin

ϕi∂xϕ j dx , Bi j =
∫ xmax

xmin

∂xϕi∂xϕ j dx

where the set {ϕi} stand for the usual SEM basis, i.e. , in each element the set of
Lagrange polynomials associated to the N+1 GLL points, and where in each element
the GLL quadrature rule is used to compute the integrals. The mass matrix is then
diagonal, whereas the integrals defining D and B are computed exactly since the GLL
quadrature rule is exact for polynomials of degree 2N− 1. One can eliminate F =
−M−1BU to obtain the expression

M∂tU−βDM−1BU = 0,

which points out the matrix implementation, in the present CG approach, of the third
order derivative term

A1 =−DM−1B.

In the general finite element framework, it could be intricate to compute this matrix
since it requires to compute the inverse of the mass matrix. Thus, in [49], where the
third order derivative is handled in a similar way, it is suggested to lump the mass
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matrix, which is not acceptable when high order methods are concerned. Here the
breakthrough is that the SEM mass matrix M being diagonal setting up the operator
DM−1B is quite easy. Moreover, this property is not specific to the one-dimensional
framework.

In the periodic case, an integration by parts shows that D = −Dt , i.e. D is anti-
symmetric, so that one also has

A1 = DtM−1B. (5)

In the non periodic case such an expression may be of interest to enforce a boundary
value of ∂xxu, through an integration by parts of (3), whereas a Neumann condition
can be enforced through (4). Of course, boundary terms arise if these conditions are
not homogeneous, see Section 2.2.

2.1.2 Strategy B: H1-approximation of first derivative

Another approach is to define, for any function uh ∈ Eh, an approximation u′h ∈ Eh of
its derivative by L2 projection of ∂xuh onto Eh. On the basis of the following problem:
Given uh ∈ Eh, find u′h ∈ Eh such that,∫ xmax

xmin

u′hvh dx =
∫ xmax

xmin

∂xuh vh dx , ∀vh ∈ Eh ,

one defines a differentiation operator which can be used to approximate high order
derivative terms. Again, this is especially simple when the SEM is concerned, be-
cause the SEM matrix is diagonal so that the previous mass matrix problem can be
trivially solved. Using the notations introduced previously, one obtains the algebraic
expression:

MU ′ = DU .

Such an approach clearly shows a way to approximate higher order derivative terms: a
matrix implementation of derivatives of order p could be D(M−1D)p−1. For the equa-
tion (2), this approach immediately leads to an expression of a third order derivative
algebraic operator

A2 = D(M−1D)2 .

As for strategy A, one may use the antisymmetry of D to obtain equivalent expres-
sions, e.g. :

A2 = (DtM−1)2D , (6)

that may be useful in the non periodic case to weakly enforce boundary conditions
on ∂xu or on ∂xxu, see Section 2.2.

Coming back to the approximation of f = ∂xxu, one has MF = −DtM−1DU ,
which is directly comparable to the usual weak form, obtained with Strategy A,
MF = −BU . Especially, both of them allow to enforce Neumann conditions in the
non periodic case. The advantage of Strategy A is that matrix B can be set up by
assembling elementary matrices, contrarily to the algebraic operator that we have
introduced. Hence, matrix B is mainly composed of overlapping square blocks of
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size (N + 1), the overlaps being scalars, whereas one easily checks that for matrix
DtM−1D they are of size (2N + 1), the overlaps being now square matrices of size
(N +1), see Fig. 1. Then, matrix A1 and matrix A2 are mainly composed of overlap-
ping square blocks of size (2N +1) and (3N +1), respectively.

Matrix B Matrix Dt M−1D

Fig. 1 Stencil of matrices. N = 4, 10 elements.

It should be mentioned that the kernel of the matrix D, and consequently the
kernel of the matrix DtM−1D, is of dimension 2. Because of the periodic boundary
conditions, as the kernel of the matrix B it contains the constant vector, which is as-
sociated in each element to the Legendre polynomial L0(x)(= 1), but also the vector
that in each element is associated to the Legendre polynomial LN(x). This directly
results from the definition of the GLL points, where LN(x) finds his extrema. More
precisely, in each element and up to scaling factors: If N is even the eigenfunction
coincides with LN(x), whereas if N is odd it alternatively coincides with ±LN(x), so
that in both case the eigenfunction is in Eh. Since we consider a time evolution prob-
lem, this does not impact the stability of the algorithm. Finally, we have numerically
checked that the condition number of the matrices B and DtM−1D, defined as the ra-
tio of the largest eigenvalue over the smallest non zero one, have similar behaviours:
K2N3, K being the number of elements, see Fig. 2. Consequently, the computational
costs are comparable and one may think that a preconditionner efficient for B will be
efficient for DtM−1D, but in the frame of a one-dimensional equation like KdV this
is of limited interest.

Strategy B is equivalent to consider the problem: Find uh, fh and gh : R+→ Eh,
such that: ∫ xmax

xmin

∂tuhvhdx+β

∫ xmax

xmin

∂x fhvhdx = 0 , ∀vh ∈ Eh , (7)∫ xmax

xmin

fhvhdx =−
∫ xmax

xmin

gh∂xvhdx , ∀vh ∈ Eh , (8)∫ xmax

xmin

ghvhdx =
∫ xmax

xmin

∂xuhvhdx , ∀vh ∈ Eh . (9)

Such an approach is in fact typical of the DG method, see e.g. the formulation consid-
ered in [52,53] for the LDG approximation of (2). Recall that LDG is called “local”,
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As a function of N (polynomial degree) As a function of K (number of elements)

Fig. 2 Condition number of matrices B and Dt M−1D

because the elimination of the additional variables is made locally, i.e. in each ele-
ment. Consequently, just like in our SEM approach, no global mass matrix has to be
inverted. Of course, LDG also requires to set up adhoc numerical fluxes to obtain
a well posed discrete problem. Let us also mention the recent work [22], where the
LDG technique is implemented both in space and in time, in order to avoid a severe
constraint on the time step. As developed in Section 3.1, to avoid such a constraint
we treat implicitly the third order derivative term.

Here one can state that:

Lemma 1 If using strategy B, the semi-discrete SEM approximation of (2) yields the
exact conservation of the discrete energy.

Proof With vh = uh in (7), vh = gh in (8) and vh = fh in (9), one obtains:

1
2

∫ xmax

xmin

∂tu2
h dx = β

∫ xmax

xmin

gh∂xgh dx =
β

2
[g2

h]
xmax
xmin

= 0

by periodicity. These equalities still hold when using the GLL quadrature rule: In-
deed, in each element the derivative of a polynomial of degree N is exactly computed
and the GLL quadrature is exact for polynomials of degree 2N−1.

The result can also be derived from the algebraic system. Indeed, since the matrix
A2 is antisymmetric, when using Strategy B we have:

〈A2U,U〉= 0⇒ ∂t〈MU,U〉= 0 .

2.2 The non periodic case

For the sake of simplicity the periodic case has till now been considered. We show
in this Section that the non periodic one can also be easily addressed. To be more
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precise, we assume that a Dirichlet condition is imposed at xmin and that ∂xu and ∂xxu
are given at xmax, i.e.

u(xmin) = b−, ∂xu(xmax) = b′+, and ∂xxu(xmax) = b′′+,

where b−, b′+ and b′′+ are given data, that may depend on the time variable. In the
SEM (and FEM) framework, Dirichlet conditions are usually addressed strongly. This
means that the space Eh is now restricted to the functions which additionally vanish at
xmin. It raises a difficulty for the discrete variable fh (and gh in strategy B) for which
no Dirichlet boundary condition is imposed at xmin. A unique grid solution consists
in keeping the GLL points approximation while constraining the value of fh(xmin)
using a polynomial extrapolation from the other values of fh in the element that con-
tains xmin. This is natural here since it means that in the left hand side boundary
element fh is a polynomial of degree N− 1. Indeed, in each element ∂xxuh ∈ PN−2,
and looking for fh ∈ PN relies on the need of the C0 continuity or on the need to
impose a boundary condition on ∂xxu, as on the right hand side element. In the left
hand side element, there is clearly only one constraint to impose (the C0 continuity at
its right interface). Note that this approach using extrapolation can be easily extended
to multidimensional problems.

2.2.1 Strategy A

To enforce the considered boundary conditions the discrete system is rewritten:∫ xmax

xmin

∂tuhvhdx−β

∫ xmax

xmin

fh∂xvhdx =−βb′′+vh(xmax) , ∀vh ∈ Eh ,∫ xmax

xmin

fhvhdx+
∫ xmax

xmin

∂xuh∂xvhdx = b′+vh(xmax) , ∀vh ∈ Eh .

To set up the algebraic system, let us split the unknown vector U in U = U0 +U1,
where U1 takes into account the Dirichlet boundary value u(xmin) = b−, i.e. all the
components of U1 are zero except one which equals b−. Similarly, let us state that
F = F0+F1, where the non null value of F1 is computed by polynomial extrapolation.
One may write F = EF0. The matrix E is an easily identifiable extrapolation matrix:
Only one line differs from the identity matrix, and its entries are computed, for the
reference element (−1,1), using the usual expressions of the Lagrange polynomials.
Additionally, we introduce the diagonal matrix R such that U0 = RU (and F0 = RF),
i.e. R is a diagonal matrix with diagonal terms equal to 1 except one term set to 0.
Then one can set up the discrete system

M∂tU0−βRDtEF0 = S1,

MF0 +RBU0 = S2−RBU1 .

where S1 is associated to the conditions ∂xxuh = b′′+ and S2 to the condition ∂xuh =
b′+. Note that for the sake of simplicity the notations of the mass and differentiation
matrices have not been changed. In our notations, their dimensions equal the total
number of grid points. Note also that two equations of the system resume to 0 = 0, to



A SEM approximation of the KdV model and conservation of quadratic invariants 9

be replaced by (i) the Dirichlet value uh(xmin) = b− and (ii) the extrapolation equation
that gives fh(xmin). By elimination of the vector F0 one obtains:

M∂tU0 +βRDtEM−1RBU0 = S , S = S1 +βRDtEM−1(S2−RBU1) .

Clearly, this system is no longer homogeneous but can be handled similarly to the
one obtained when assuming periodicity, see (5).

2.2.2 Strategy B

To include the considered boundary conditions, the discrete system is rewritten:∫ xmax

xmin

∂tuhvhdx−β

∫ xmax

xmin

fh∂xvhdx =−βb′′+vh(xxmax) , ∀vh ∈ Eh ,∫ xmax

xmin

fhvhdx =−
∫ xmax

xmin

gh∂xvhdx+b′+vh(xxmax) , ∀vh ∈ Eh ,∫ xmax

xmin

ghvhdx =
∫ xmax

xmin

∂xuhvhdx , ∀vh ∈ Eh .

By proceeding as for strategy A one obtains the algebraic system:

M∂tU0−βRDtEF0 = S1,

MF0 +RDtEG0 = S2,

MG0−RDU0 = RDU1 .

By elimination of F0 and G0 one obtains:

M∂tU0+β (RDtEM−1)2RDU0 = S , S= S1+βRDtEM−1S2−β (RDtEM−1)2RDU1 .

As for strategy A, the obtained system is non homogeneous but similar to the one
obtained for the periodic problem, see (6).

2.3 Treatment of the transport term

The transport term is handled by adding to the discrete formulation the following
term: ∫ xmax

xmin

uh∂xuhvh dx, (10)

where vh is the test function. Let us remark that, on each element, uh∂xuhvh is a poly-
nomial function of degree 3N−1. Thus, when using the GLL quadrature associated
to the approximation degree N (which is exact only for polynomial functions up to
degree 2N−1), the term (10) is not exactly computed. In numerical simulations, we
observe that it can lead to spurious oscillations, so that the use of a more accurate
quadrature rule is desirable to compute the term (10). Also, an exact integration has
an interesting theoretical consequence: in this case Lemma 1 still holds since the
formula ∫ xmax

xmin

u2
h∂xuh dx =

1
3
[u3

h]
xmax
xmin

= 0,
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by periodicity, is exactly computed. Thus, if using Strategy B, the L2 norm of the
semi-discrete solution is exactly conserved during the time evolution.

In the frame of the SEM, quadrature rules as accurate as required can be obtained
by using a GLL grid associated to a polynomial degree M > N. This finer GLL grid
is only introduced on the reference element and an extension operator from the initial
GLL grid (associated to the degree N) to the finer one (associated to the degree M)
is set up on the reference element. The quadrature rule associated to the finer GLL
grid is of order 2M−1, so that an exact integration of the term (10) can be obtained
with M such that 2M− 1 > 3N− 1, i.e. M > 3N/2. Nearly all the results presented
in Section 4 are obtained with this “overintegration” strategy. However, as outlined
in [33,40], using M = N + 1 or M = N + 2 may be sufficient to avoid the spurious
oscillations.

To end this section, we emphasize the fact that a viscous stabilization technique
is not required unless very coarse grids are used. This is due to the fact that the third
order derivative term provides a regularization, see e.g. [30], so that the solution of
KdV is smooth, provided that the initial data is smooth. On very coarse mesh, the
SVV technique, see Appendix A, may be of interest. Indeed, in the frame of spectral
methods this technique is known to be efficient for the inviscid Burgers equation,
which formally can be obtained from the KdV equation in the limit β = 0. Even if
this discussion is beyond the scope of the present paper, it is however important to
mention that the use of a viscous stabilization may be criticized since it is known [35]
(see also [27]) that diffusive and dispersive regularizations of the inviscid Burgers
equation lead to different solutions when the regularization parameter tends to 0. For
comparisons, in Section 4.6, we carry out computations using the SVV technique and
point out the influence of such a stabilization.

3 Time discretization and conservation of invariants

For the sake of computational efficiency, we propose to handle the non-linear term
N (u) = u∂xu explicitly, whereas for the sake of numerical stability, we propose
an implicit treatment of the linear term L (u) = β∂xxxu. This indeed allows a time-
independent algebra, i.e. the algebraic operator associated to the linear term is only
inverted once in a preprocessing stage. Moreover, with this choice, one can expect
the usual Courant-Friedrichs-Lewy (CFL) stability condition. To obtain a high order
approximation in coherence with the SEM, we propose to use an implicit-explicit
(IMEX) Runge Kutta (RK) scheme. This is explained in Section 3.1. However, al-
though IMEX schemes ensure the preservation of all linear invariants (as the first
invariant associated to the KdV equation), they do not allow to preserve all quadratic
invariants (as the second one, see (11)). We remedy this problem, in Section 3.2, by
proposing an additional step which ensures the conservation of a specific quadratic
invariant while preserving the accuracy order of the time scheme.
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3.1 Implicit-explicit Runge Kutta scheme

The IMEX schemes were first developed in the 90’s [2] and details may now be found
in several papers, see e.g. [41]. They combine an Explicit RK (ERK) scheme for the
operator N and an Implicit RK (IRK) scheme for the operator L . Denoting by τ the
time step, a s-stages IMEX scheme for the ODE ∂tu = N (u)+L (u), may read as
follows


un,i = un + τ

s

∑
j=1

(
âi jN j +ai jL j

)
, ∀i = 1, ..,s,

un+1 = un + τ

s

∑
j=1

(
b̂ jN j +b jL j

)
.

where the N j ≡N (un, j) and L j ≡ L (un, j) are the values of N (u) and L (u) at
the intermediate RK steps. The two schemes are defined by the coefficients Â = (âi j),
b̂ = (b̂ j) and A = (ai j), b = (b j), 1 6 i, j 6 s, which are classically gathered in a
Butcher tableau, see e.g. [9]. The coefficients in Â should vanish when j > i since
they define an explicit scheme. Concerning the implicit part, IMEX schemes gener-
ally make use of Diagonally IRK (DIRK) schemes, that is ai j = 0 if j > i. Conse-
quently, the intermediate unknowns un,i can be successively computed by “inverting”
the operators Id− τaiiL , for i = 1, ..,s (Id, for identity operator). Moreover, it is
usual to assume that the normalized intermediate times ci = ∑

s
j=1 ai j = ∑

s
j=1 âi j of

the two schemes coincide and also the coefficients in b̂ and b are often the same (in
that case, the order of the resulting IMEX scheme is exactly the minimum of the order
of its two constituting schemes).

An IMEX scheme preserves all linear invariants but, as an ERK scheme, it can-
not preserve all quadratic invariants. However, it is possible to focus on a specific
quadratic invariant and ensure its conservation (see Section 3.2).

In this article, we mainly use the IMEX scheme ARS (2,3,3) [3], characterized
by 2 implicit steps, 3 explicit ones and which is globally third order accurate. Using
Butcher’s like notation, the coefficients of ARS(2,3,3) are provided in Table 1, where
γ = (3+

√
3)/6.

c Â A

b̂ b

←→

0 0 0 0 0 0 0

γ γ 0 0 0 γ 0

1 - γ γ -1 2(1-γ) 0 0 1-2γ γ

0 1/2 1/2 0 1/2 1/2

Table 1 IMEX coefficients for ARS(2,3,3). The ERK scheme is defined at left of the vertical double bar
and the DIRK scheme at right . The normalized intermediate times ci are given in left column.



12 Sebastian Minjeaud, Richard Pasquetti

3.2 Preservation of invariants

As e.g. explained in [25], the KdV equation is characterized by an infinity of invari-
ants. The three lowest ones write:

C1 =
∫ xmax

xmin

udx , C2 =
∫ xmax

xmin

u2 dx , C3 =
∫ xmax

xmin

(
u3−3β (∂xu)2) dx . (11)

As a direct consequence of the weak formulation, one has:

Proposition 1 Using any consistent approximation of the operator ∂t , the spectral
element schemes described in Section 2.1 preserve the mass invariant C1.

Proof Using a constant for test-function one obtains:∫ xmax

xmin

∂tuh dx =−
∫ xmax

xmin

(uh∂xuh +β∂x fh)dx .

Since in each element the SEM approximation of ∂x is exact for any polynomial of
degree N and since the GLL quadrature is exact for polynomials of degree 2N− 1,
the discrete SEM computation exactly yields

d
dt

(∫ xmax

xmin

uh dx
)
=−

[u2
h

2
+β fh

]xmax

xmin
= 0 .

Note that this holds with or without overintegration of the non-linear term.

Such a result is rather satisfactory, since many of the schemes described in the
literature on the KdV equation do not show the same property.

The time discretization plays a key role in the preservation of the energy invari-
ant C2. To ensure its conservation, a first possibility is to make use of a scheme es-
pecially designed to this end. An example of such a scheme is the standard Crank-
Nicolson (CN) scheme. This approach is retained e.g. in the recent paper [55] where
the CN scheme is used in conjunction with a specific DG approximation designed by
tuning the DG parameters to preserve the two first invariants.

One can state the following:

Proposition 2 If (i) the integral associated to the non-linear term is exactly computed
and if (ii) the third order term is formulated using Strategy B, then the CN scheme
preserves the two first invariants.

Proof As soon as (i) is verified, this is a direct consequence of Lemma 1 and of the
fact that for CN:

∂t(u2) = 2u∂tu≈ (un+1 +un)
un+1−un

τ
=

1
τ
(u2

n+1−u2
n)

where un,un+1 are the numerical solutions at time tn, tn+1, τ = tn+1−tn being the time
step.
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Using this approach shows however two drawbacks: (i) loss of time accuracy,
since the CN scheme is only second order accurate, and (ii) increase of the compu-
tational cost, since a non-linear solve is needed at each time-step. Going back to RK
methods, it is known since [17] that a RK method preserves all quadratic invariants
if and only if its coefficients satisfy biai j + b ja ji = bib j for all 1 6 i, j 6 s, see also
e.g. [15,29]. These conditions impose strong requirements on the coefficients and are
only satisfied by some IRK methods. Nevertheless, even if ERK or IMEX RK can-
not preserve all quadratic invariants, it is possible to focus on the preservation of a
specific invariants and ensure it by projection at the end of each time step while pre-
serving the accuracy of the overall scheme. Hereafter, two possibilities are discussed.

– A first possibility is to complete the IMEX RK scheme by a L2 projection of
the RK solution onto the hypersurface associated to the constraints. This can be
achieved by introducing time dependent Lagrange multipliers. As shown in Sec-
tion 4, the two first invariants can then be exactly preserved. Because one can
derive an exact expression of the Lagrange multipliers the computational effi-
ciency is maintained. Details on the implementation of this approach, and on the
fact that the time accuracy is preserved, are provided in Section 3.2.1.

– A second possibility is to proceed by interpolation / extrapolation, at each time-
step, of the solutions obtained by using two different RK schemes. One can also
look at that as a non-orthogonal projection [8,10,11]. Then, since both schemes
preserve the first invariant, it is only required to compute an interpolation / extrap-
olation time dependent factor that allows to preserve the second invariant. If using
such an approach, the computational cost is a priori twice greater, but this is no
longer true with an embedded RK IMEX scheme. In this case, one only modifies
the bi so that the un,i are the same (see Section 3.1). Moreover, even if the embed-
ded scheme is of order q < p, the accuracy may be preserved. For instance, from
ARS(2,3,3) one obtains a lower order scheme simply by modifying the last line
of Table 1. Because for consistency reason the sum of these coefficients should
equal 1, in Section 4 we simply use the pair {1/4,3/4} instead of {1/2,1/2},
for both the ERK and the DIRK parts, which yields a first order IMEX scheme.
Details are given in Section 3.2.2.

The two algorithms described hereafter are valid for any RK schemes, are not
specific to the KdV equation and are not restricted to one dimensional problems.
They however focus on the preservation of a specific quadratic invariant. Up to our
knowledge, they have never been used for KdV. They are numerically compared in
Sections 4.1 and 4.2.

3.2.1 Algorithm 1: Invariants preservation by projection

At each time step, we proceed by discrete L2 projection of the IMEX solution onto
the manifold associated to the discrete versions of the two first invariants. Starting
from the discrete solution uh(x, tn) at time tn, we first compute the grid-point values
yi using the RK scheme and then define uh(x, tn+1) by orthogonal projection.

Denoting wi the quadrature coefficient associated to the grid-point xi, 1 6 i 6 d,
we define C1 = ∑i wiuh(xi, tn) and C2 = ∑i wi(uh(xi, tn))2. The optimization problem
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then writes: Find the δyi that minimize the functional F(δy1, · · · ,δyd) = ∑i wiδy2
i ,

such that ∑i wi(yi+δyi) =C1 and ∑i wi(yi+δyi)
2 =C2. The discrete solution at time

tn+1 is then set as uh(xi, tn+1)≡ ui = yi +δyi.
To transform the constrained optimization problem into a non constrained one,

we introduce the functional:

L(δy1, · · · ,δyd ,λ1,λ2) =

∑
i

wiδy2
i +λ1

(
∑

i
wi(yi +δyi)−C1

)
+λ2

(
∑

i
wi(yi +δyi)

2−C2

)
and the problem is now to find the δyi together with the Lagrange multipliers λ1
and λ2. At the optimum of this saddle point problem, the gradient of the functional
vanishes. This yields:

∂δyiL = 2wiδyi +λ1wi +2λ2wi(yi +δyi) = 0 (12)

∂λ1L = ∑
i

wi(yi +δyi)−C1 = 0 (13)

∂λ2L = ∑
i

wi(yi +δyi)
2−C2 = 0 (14)

so that, from (12)

δyi =−
λ2

1+λ2
yi−

λ1

2(1+λ2)
and ui =

1
1+λ2

yi−
λ1

2(1+λ2)
. (15)

It remains to plug the last expression in (13) and (14). Using the notation Sy =∑i wiyi,
Sy2 = ∑i wiy2

i and S1 = ∑i wi = xmax− xmin, one obtains:

Sy−S1
λ1

2
−C1(1+λ2) = 0 (16)

Sy2 −Syλ1 +S1
λ 2

1
4
−C2(1+λ2)

2 = 0

This non-linear system in λ1 and λ2 can be easily solved. With (1+λ2) from (16),
one obtains that λ1 solves:

1
4
(S2

1−αS1)λ
2
1 − (S1Sy +αSy)λ1 +S2

y −αSy2 = 0 (17)

where α = C2
1/C2 > 0. One can compute λ1 from this equation and then obtain λ2

from (16). Note that since α ≈ S2
y/Sy2 , the negative discriminant is relevant, because

in case of equality this yields λ1 = 0. Once knowing the Lagrange multipliers, from
(15) one computes the ui.

Now we show the following:

Proposition 3 Algorithm 1 preserves the approximation order of the RK scheme.
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Proof Assuming we use a RK scheme of order p (p = 3 in our examples) to compute
the yi, 1 6 i 6 d, then the local truncation error, i.e. the gap between the yi and the
exact solution obtained at time tn+1 starting from uh(x, tn), is O(τ p+1). We can readily
deduce that C1−Sy and C2−Sy2 are also O(τ p+1). Next we obtain that

S2
1−αS1 = O(1), S1Sy +αSy = O(1) and S2

y −αSy2 = O(τ p+1).

Equation (17) then shows that λ1 is O(τ p+1) and we deduce from equation (16) that
λ2 is also O(τ p+1). Taking into account the fact that |λ1|, |λ2|� 1, from (15) one has:

δyi ≈−λ2yi−
λ1

2

so that the correction behaves like the Lagrange multipliers. As a result, the correction
by the δyi is consistent with the accuracy of the RK scheme.

It should be noticed that more than two invariants can be considered, but certainly
at the price of a non-explicit formulation of the Lagrange multipliers.

3.2.2 Algorithm 2: Invariants preservation by interpolation / extrapolation

Here we assume to have at hand two RK IMEX schemes. Knowing the numerical
solution at time tn, uh(x, tn), we compute the grid-point values yi and zi, 1 6 i 6
d, at time tn+1 with the two RK IMEX schemes. Because each scheme preserves
the invariant C1, any linear combination of the two solutions will be C1-invariant.
The goal is then to define an interpolation / extrapolation factor λ , such that C2 is
preserved. Thus, at time tn+1, we define

ui = (1−λ )yi +λ zi , ∑
i

wiu2
i =C2 (18)

where again C2 = ∑i wi(uh(xi, tn))2, and wi are the quadrature coefficients associated
to the grid-points xi.

Using notations similar to those previously introduced, one easily checks that λ

should solve:

S(z−y)2λ
2 +2Sy(z−y)λ +Sy2 −C2 = 0 . (19)

The (reduced) discriminant writes, ∆ = S2
y(z−y) + S(z−y)2(C2− Sy2). It is positive as

soon as C2 > Sy2 , i.e. if the y-scheme is dissipative. In case of equality, the coefficient
λ should vanishes, which means that the relevant solution is obtained by using the
sign of the quantity Sy(z−y) against the discriminant.

As for Algorithm 1, one has the following less intuitive result:

Proposition 4 Algorithm 2 generally preserves the approximation order of the RK
scheme.
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Proof Let us assume that the y-scheme is of order p and the z-scheme of order q < p.
By definition, for any grid-point we can write

yi = ūi +O(τ p+1), zi = ūi +ψiτ
q+1 +O(τq+2),

where ūi is the exact solution, obtained at point xi and time tn+1, when starting from
uh(x, tn). Hence, coming back to the coefficients of equation (19) we have

S(z−y)2 = O(τ2q+2), Sy(z−y) = Sūψ τ
q+1 +O(τq+2), Sy2 −C2 = O(τ p+1).

If we assume that Sūψ 6= 0, then the discriminant of (19) is positive, at least for τ

small enough, and we obtain that λ is O(τ p−q). Hence, from the expression of ui in
(18), the accuracy of the y-scheme is preserved.

A similar result was previously provided for ERK schemes in [10, Theorem 3.1].

4 Numerical experiments

The numerical examples provided in this section are considered as standard bench-
marks for KdV solvers. For the two first examples, in Sections 4.1 and 4.2, we refer
to [25] or e.g. to [1,14,47,57] when using the FEM. The third example, in Section
4.3, goes back to the pioneering paper [56], see also e.g. [58,18]. In Section 4.4, as in
[18] we investigate the long-time behaviour of the scheme considering a one-soliton
solution. In Section 4.5 we revisit a non periodic problem, i.e. involving boundary
conditions, investigated in [54].

Unless otherwise specified, the third order derivative is approximated on the basis
of Strategy A, see Section 2.1.1, and an exact integration of the non-linear term is
achieved by using the GLL grid associated to the polynomial approximation degree
M > 3N/2, see Section 2.3. In the sequel, we use values of N up to 5, so that we
take M = 8. The time discretization is based on a globally third order accurate IMEX
scheme: ARS (2,3,3) [3] (see Section 3.1).

We point out some differences between the two strategies presented in this pa-
per and also discuss the interest of the overintegration and of the SVV technique in
Section 4.6.

4.1 Test-case 1

This example describes the interaction between two solitons. Because an exact solu-
tion is known for the open domain Ω ≡ R, it allows to carry out an accuracy study.

As described e.g. in [25], for β = 4.8410−4 the following analytic expression
solves the KdV equation:

uex(x, t) = 12β (LogF)xx,

with F = 1+ eη1 + eη2 +αe(η1+η2) and ηi = αix−α3
i β t +bi, i = 1,2, the values of

the coefficients α1, α2, b1 and b2 being defined by the relationships

α =
(

α1−α2

α1 +α2

)2
, α1 =

√
0.3/α, α2 =

√
0.1/α, b1 =−0.48α1, b2 =−1.07α2.
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Computations have been carried out for x ∈ (−1,4) and t ∈ (0,6.3), assuming peri-
odicity and using for initial condition the exact value at t = 0. In the considered time
interval, on an animation one clearly observes the propagation of the two solitons of
magnitude 0.9 and 0.3, their crossing and then their reformation. Fig. 3 shows this
time evolution in the (x, t)-plane.

Fig. 3 Test-case 1: Contour levels of the numerical solution in the (x, t)-plane. Computation done with
K = 300 elements, a polynomial degree N = 5 and a time step τ = 9 10−5.

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001 0.001

L
2
 e

rr
o
r

Time step

ARS(2,3,3)
with proj.

with inter./extra.

Fig. 4 Test-case 1: Time accuracy for the ARS(2,3,3) scheme, in its basic version and when associated to
an additional correcting step. L2-error as a function of the time step.

We first check if the third order time accuracy of the RK IMEX scheme is ob-
tained. To this end, computations have been carried out with the fine grid obtained
for K = 300 and N = 5, using different time-steps. Moreover, in Section 3.2 it is
proved that the accuracy of the IMEX scheme is preserved when completing it with
an additional step, in view of preserving the two first invariants. To check that, com-
putations have also been carried out using (i) the projection and (ii) the interpola-
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tion/extrapolation techniques. Fig. 4 shows the L2 norm of the gap between the nu-
merical and exact solutions. Before the saturation associated to the error in space,
one clearly observes that ARS(2,3,3) is third order accurate, even if associated with
an additional correcting step. In the present example, it turns out that the accuracy is
improved when using a correcting step, and that the best accuracy is obtained with the
interpolation/extrapolation technique. Hereafter, this is the approach used to check
the space accuracy.

Fig. 5 Test-case 1: L2-error as a function of the polynomial degree N (at left) and of the element size h (at
right)

To carry out the space accuracy study, we have considered polynomial ap-
proximation degrees such that 2 6 N 6 5 and the following numbers of elements,
K ∈ {50,100,200,300,400,500}. To make negligible the time-stepping error, we
have used the small time-step value τ = 5 10−5. Results are provided in Fig. 5. As
expected, one clearly observes, in Fig. 5(left) the exponentially fast decrease of the
error with respect to the polynomial degree N and in Fig. 5(right) an algebraic con-
vergence with respect to the element size h of order about N +1, see Table 2, which
is optimal. It should however be mentioned that:

- Such accuracy results cannot be obtained for Ω = (0,4), as considered in [1,
25,57]. In these papers, the listed errors remain indeed greater than the value of
uex(0,0), i.e. , around 10−6. As a result, with this computational domain one observes
a saturation in the decrease of the error. The phenomenon is overcome when using
Ω = (−1,4), because at both end sides, uex, which is defined for Ω ≡ R, is then
smaller than the round off error.

- To avoid an artifact due to a superconvergence associated to the quadrature rule,
the L2 errors have been computed by using the overintegration technique, i.e. in each
elements the GLL points obtained for N = 8 have been used as quadrature points.
Some convergence rates of Fig. 5 may even seem greater than N+1. This is due to the
fact that for too rough discretizations, e.g. , N = 2 and K 6 200, the asymptotic regime



A SEM approximation of the KdV model and conservation of quadratic invariants 19

is not yet reached. We are here in the underresolved case considered in Section 4.6. If
using only the results obtained for h 6 0.025, i.e. K > 200, linear regressions (carried
out for the logarithms of the L2 error and of the grid size) provide the convergence
rates given in Table 2.

N 2 3 4 5
Conv. rate 3.099 4.026 4.996 5.962

Table 2 Test-case 1: L2 error convergence rates for N ∈ {2,3,4,5}.

4.2 Test-case 2

Starting from a Gaussian as initial condition, interesting solutions may be obtained.
They crucially depend on the value of the β parameter with respect to a critical value
βc. For β � βc, the initial condition splits into a series of stiff solitons, which number
depends on the value of β . We use this example to show that even for very stiff
solutions, the high order approximation may yield satisfactory results. Moreover, as
e.g. in [25], we check on this example the conservation of the 3 lowest invariants, see
equation (11).

As in [25,57] we solve the KdV equation for t ∈ (0,12.5) and in the compu-
tational domain Ω = (−15,15). For initial condition we use u(x,0) = exp(−x2),
so that the critical β is βc = 0.0625 [5]. We choose the value β = 10−3 � βc,
so that one expects the formation of 9 solitons, in agreement with the formula
Nsoliton = b(13β )−0.5c (b.c for integer part) [34].
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Fig. 6 Test-case 2: Solution at different times.

Computations have been carried out using K = 240 and K = 300 elements, with
a polynomial degree N = 5. In terms of number of degrees of freedom, say do f ,
K = 240 and K = 300 correspond to the values do f = 1200 and do f = 1500 used
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in [25] and in [57], respectively. The solution obtained at different times, without
correcting step and for K = 300, is shown in Fig. 6. After the splitting into solitons
one can check that the propagation velocity V of each soliton is proportional to its
amplitude A, since the maxima are aligned on a straight line, and that as theoretically
predicted V = A/3 [5].

Time 0.0 2.5 5.0 7.5 10.0 12.5
C1 1.77245 1.77245 1.77245 1.77245 1.77245 1.77245
C2 1.25331 1.25325 1.25231 1.25136 1.25174 1.25179
C3 1.01957 1.01898 1.00940 1.00253 1.01040 1.01463

Table 3 Test-case 2: The invariant C1, C2 and C3 at different times, K = 240 and N = 5.

Now we focus on the invariants and first provide results obtained without correct-
ing step. Tables 3 and 4 give the invariants at several times, as obtained with K = 240
and K = 300 elements, respectively. As expected, the invariant C1 is exactly con-
served. Concerning the two other invariants, for K = 240, at the final time t = 12.5
the relative variations of the coefficients C2 and C3 are of −0.12% and −0.48%, re-
spectively. Of course, better results are obtained with K = 300 elements, with relative
variations for C2 and C3 of −0.04% and −0.13%.

Time 0.0 2.5 5.0 7.5 10.0 12.5
C1 1.77245 1.77245 1.77245 1.77245 1.77245 1.77245
C2 1.25331 1.25330 1.25335 1.25317 1.25283 1.25279
C3 1.01957 1.01948 1.01912 1.01888 1.01864 1.01829

Table 4 Test-case 2: The invariant C1, C2 and C3 at different times, K = 300 and N = 5.

The latter results can be compared to those in [57], obtained with a quintic B-
spline FEM. With the same number of grid-points, the relative variations for C1, C2
and C3 are +0.05%, +0.016% and +0.35%, respectively.

As explained in Section 3, the conservation of the two first invariants is obtained
by using an additional correcting step, based on a projection on the manifold de-
scribed by the two first invariants or by interpolation/extrapolation of two embedded
RK IMEX schemes. The results obtained with N = 5 and K = 240 elements when
using the two techniques are provided in Table 5. As expected, the overhead compu-
tational cost is negligible.

Time 0.0 2.5 5.0 7.5 10.0 12.5
C1 1.77245 1.77245 1.77245 1.77245 1.77245 1.77245
C2 1.25331 1.25331 1.25331 1.25331 1.25331 1.25331

C3 (1) 1.01957 1.01907 1.01068 1.00415 1.01051 1.01660
C3 (2) 1.01957 1.01910 1.01054 1.00250 1.00871 1.01662

Table 5 Test-case 2: The invariant C1, C2 and C3 at different times, K = 240 and N = 5, SEM scheme
completed with (1) a projection step and (2) an interpolation/extrapolation step.
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4.3 Test-case 3:

Like in the pioneering paper [56] or e.g. more recently in [18], we consider the KdV
equation with β = 0.0222 in the periodic domain (0,2) and assume the initial condi-
tion u0(x) = cos(πx). The numerical solution is computed with K = 160 elements, a
polynomial approximation degree N = 5 and a time step τ = 2.5 10−4. An additional
correcting step based on interpolation/extrapolation is used, see Section 3.2.2.

Fig. 7 shows the numerical solution at different critical times {0, tB = 1/π ≈
0.3183, 3.6tB ≈ 1.1459}, where tB = −1/min(u′0) is the so-called breakdown time,
at which characteristics begin to cross for the Burgers equation. These results agree
very well with the numerical results obtained with other schemes [18,58]. We observe
that, at time tB, the solution is about to breakdown and, at time 3.6tB, we discern a
train of 8 solitons.
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Fig. 7 Test-case 3: Numerical solution at times t = {0, tB, 3.6tB}. Computation done with K = 160 ele-
ments, a polynomial degree N = 5 and a time step τ = 2.5 10−4.

As in [18], we then carry out the computation to the times 0.5tR, tR, 2tR, 5tR, 10tR

and 20tR, where tR = 30.4tB is the so-called recurrence time, at which one expects
to (approximately) recover the initial condition. The results obtained are presented
in Fig. 8. These long time computations are stable, since no spurious oscillations
appear. For the larger times, our results differ from the ones presented in [18]. One
can check that such results are well converged in space and time: Fig. 9 shows a
zoom on the interval (1,1.6) of the numerical solutions at time 20tR obtained with
different mesh sizes and time steps. The different results agree well apart from the
one obtained on the coarser mesh. In this latter case, some little spurious oscillation
appear (see Section 4.6). The contour levels of the numerical solution in the (x, t)-
plane are plotted in Fig. 10 between times 0 and tR at left, and between times 19tR

and 20tR at right.
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Fig. 8 Test-case 3: Numerical solution at times t = 0.5tR, tR, 2tR, 5tR, 10tR and 20tR. Computation done
with K = 160 elements, a polynomial degree N = 5 and a time step τ = 2.5 10−4.
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Fig. 9 Test-case 3: Zoom of the numerical solutions at times 20tR. Computations done for various values
of the number of elements K and time-step τ , and with a polynomial degree N = 5.

4.4 Test-case 4:

We consider the one-soliton solution of the KdV equation, with β = 1, on the whole
line:

u(x, t) =
12κ2

cosh2(κx−4κ3t)
. (20)

This solution with κ = 0.3 is used to test the stability of our method in long time
integration, as in [18]. In order to minimize the influence of boundary conditions, in
our computation a large interval (−80,80) is chosen as computational domain, the
exact solution being then close to the machine accuracy at the two end points. Then,
periodic boundary conditions are used. We make comparison, after long time simu-
lations, between the numerical solution and the “quasi-exact” solution obtained by
periodization of (20). The simulation is performed with K = 120 cells, a polynomial
degree N = 5 and a time step τ = 0.106667 so that the number of degrees of freedom
and the time step are comparable to those used in [18]. An additional correcting step
based on interpolation/extrapolation is used, see Section 3.2.2. The results at time
t = 105/0.45, t = 2 105/0.45 and t = 106/0.45 are displayed in Fig. 11. At these
very long times (much larger than in [18]), one observes a small phase error whereas
the shape is well preserved.
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Fig. 10 Test-case 3: Contour levels of the numerical solution in the (x, t)-plane, between times 0 and tR at
left, between times 19tR and 20tR at right. Computation done with K = 160 elements, a polynomial degree
N = 5 and a time step τ = 2.5 10−4.

4.5 Test-case 5

To address the non periodic case, as in [54] we compute the classical soliton solution

uex(x, t) =−2sech2(x−4t)

of the following KdV equation

∂tu−3u∂xu+∂xxxu = 0.

The initial condition is given by the exact solution uex(x,0) and we use the following
boundary conditions

u(xmin, t) = b−(t), ∂xu(xmax, t) = b′+(t), and ∂xxu(xmax, t) = b
′′
+(t),

where the boundary data are obtained from the exact solution. We use here the Strat-
egy A presented in Section 2.2.1 to discretize the third order term but similar results
have been obtained with the Strategy B. To compare our results with those obtained
in [54], we first provide in Table 6 the numerical errors obtained at time t = 0.5 on the
computational domain (−10,12) for different mesh size, the time step being chosen
small enough so that spatial errors dominate. The magnitude of the errors are com-
parable to those obtained in [54] and we observe optimal convergence order. Next,
we carry out a simulation in the computational domain (5,15) and up to time t = 4.5,
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Fig. 11 Test-case 4: Zoom on numerical and quasi-exact solutions at times t = 105/0.45 (top left), t =
2 105/0.45 (top right) and t = 106/0.45 (bottom). Computation done with K = 120 elements, a polynomial
degree N = 5 and a time step τ = 0.106667.

N K=40 K=80 K=160 K=320
error error order error order error order

2 L2 1.47e-2 1.06e-3 3.8 1.26e-04 3.1 1.55e-05 3.0
L∞ 1.42e-2 1.41e-3 3.3 1.72e-04 3.0 2.15e-05 3.0

3 L2 1.03e-3 4.79e-5 4.4 2.97e-6 4.0 1.85e-7 4.0
L∞ 1.39e-3 9.49e-5 3.9 5.92e-6 4.0 3.72e-7 4.0

Table 6 Test-case 5: L2 and L∞ errors at time t = 0.5 with (xmin,xmax) = (−10,12).

using N = 5 and K = 100 elements. The results for different times are plotted in
Figure 12 (only the values at the end points of the elements are visualized). At the
initial time, the soliton is outside the computational domain at left. It goes through
the whole domain from left to right during the simulation and is outside at right at
the final time. We can observe that the boundary conditions are properly taken into
account.

4.6 Underresolved test-case 2

The numerical results presented till now have been obtained using Strategy A to ex-
press the third order derivative and exact integration for the transport term, but close
results can be obtained when using Strategy B, the SVV method instead of overinte-
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Fig. 12 Test-case 5: simulation in the computational domain (5,15), numerical solution (points) and exact
solution (lines) at different times. Computation done with K = 100 elements, a polynomial degree N = 5
and a time-step τ = 5 10−4.

.

gration or even with none of these treatments. To make comparisons between these
different approaches, we consider here again the test-case 2 but with a rougher mesh,
i.e. K = 180 elements, again with a polynomial degree N = 5. In time, one uses the
IMEX scheme completed with an interpolation / extrapolation correcting step.

-0.5
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 4  5  6  7  8  9  10

u

x

Overint.
SVV

Nothing
K=300

Fig. 13 Test-case 2: Underresolved solutions at time t = 12.5 with overintegration, SVV and none of them.

Fig. 13 compares, at the final time t = 12.5 and when using Strategy A, the re-
sults obtained (i) without overintegration, (ii) with exact integration of the non-linear
term (M = 8) or (iii) if using the SVV method, with mN = [

√
N] = 2 and εN = h/N,

see Appendix A. For the sake of comparison, the solution obtained with K = 300
elements is also shown. Clearly, without overintegration or SVV stabilization, the
solution shows oscillations and moreover the propagation velocities of the solitons
are overvalued. The best result is here obtained with the overintegration of the non-
linear term: The solution is indeed smoother and the propagation velocities are not
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affected. One remarks that the SVV method slightly affects the propagation veloc-
ity. This phenomenon is strongly amplified when choosing mN = 0, i.e. when also
inserting viscosity on the low frequencies of the solution.
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Fig. 14 Test-case 2: Underresolved solutions at time t = 12.5 with strategies A and B.

The strategies A and B are compared in Fig. 14, with exact integration of the
transport term. One may observe that the propagation velocities are not affected, but
that Strategy B yields qualitatively better results than Strategy A, since providing a
smoother solution.

5 Concluding remarks

SEM schemes, i.e. involving high order C0 continuous elements, together with IMEX
RK time discretizations, and possibly an additional correction step for the preser-
vation of invariants, have been proposed to address the approximation of dispersive
equations and then applied to KdV. Such an approach is highly accurate and, differ-
ently to many other methods, offers a great flexibility in the choice of the approx-
imation orders, both in space and in time. Moreover, the algorithms that have been
described are simple, efficient and can be easily implemented in existing SEM soft-
wares:

- The operators defined to address the high order derivative terms are easy to set
up, since they are based on the usual mass matrix and usual stiffness (strategy A) or
differentiation (strategy B) matrix. Taking advantage of the fact that the SEM matrix
is diagonal, the present SEM schemes do not suffer from an increase of the number
of unknowns.

- In time, we do not make use of a specific time scheme but instead propose
choosing one of the family of IMEX RK schemes. This allows highly accurate im-
plicit treatment of the linear term and explicit treatment of the convective term. The
complexity of the time marching algorithm is then minimized and only submitted to
the usual CFL constraint.
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- Rather than using a specific time discretization, e.g. the Crank-Nicolson scheme
as described in Section 3.2 (see Proposition 2), we have proposed two ways to enforce
the exact conservation of the energy that are not specific to KdV or to 1D problems.
Especially, the recently developed embedded IMEX RK schemes have appeared of
great interest. They are easy to implement and cheap, since the secondary IMEX RK
is just a minor modification of the main one.

- Also, it has been shown that an exact integration of the non-linear transport term
was of interest.

Optimal accuracy results have been obtained using this methodology and diffi-
cult test problems have been successfully addressed : stiff problem, with long time
integration, with effective boundary conditions.

These SEM schemes can be easily extended to multidimensional geometries and
beyond the KdV equation, the present SEM methodology a priori applies to other
PDEs showing higher order derivative terms. Thus, it would be of interest to ad-
dress the Boussinesq system, i.e. the Saint-Venant system completed with additional
dispersive terms, or more generally Boussinesq type equations, as e.g. done using a
space-time LDG in [22]. Especially, one may think that the present SEM approach
would be well adapted to handle a cross derivatives term, like ∂txxu, by introducing
the additional variable f = ∂xxu (strategy A). This will be investigated in near future.

A Spectral vanishing viscosity technique

The spectral vanishing viscosity (SVV) technique, as introduced in [38,46] for the Fourier and Legendre
spectral approximations of the Burgers equation, is a viscous stabilization in spectral space. It is controlled
by two parameters that depend on the polynomial approximation degree N, say mN and εN , which define
the threshold and the magnitude of an additional viscous term. In the frame of the SEM it is relevant to
consider the stabilization term, in the reference interval (−1,1)

SN = εN∂xQN(∂xuN)

where we denote by uN the polynomial approximation of degree N and by QN the spectral viscosity
operator such that, for any polynomial vN ∈ PN(−1,1),

QN(vN) =
N

∑
k=0

Q̂k v̂kLk(x) .

The v̂k are the components of vN in the (orthogonal and hierarchical) Legendre basis {Lk}, and the Q̂k are
monotonically increasing coefficients such that, Q̂k = 0 if k 6 mN and 0 < Q̂k 6 1 otherwise. As suggested
in [38], we use Q̂k = exp(−(k−N)2/(k−mN)

2) for mN < k 6 N.
Using now vN as a test function, in weak form the stabilization term writes (boundary terms are

neglected): ∫ 1

−1
vNSN dx = εN

∫ 1

−1
vN∂xQN(∂xuN)dx

= −εN

∫ 1

−1
∂xvNQN(∂xuN)dx

= −εN

∫ 1

−1
Q1/2

N (∂xvN)Q
1/2
N (∂xuN)dx

where in the last equality, which results from the orthogonality of the Legendre polynomials, Q1/2
N is de-

fined as QN , but using the coefficients
√

Q̂k . This last form is especially of interest when multidimensional
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SEM approximations are considered [51], whereas in the frame of the 1D SEM used in this paper, the two
forms are strictly equivalent.
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