Limits of Structures and the Example of Tree-Semilattices - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Limits of Structures and the Example of Tree-Semilattices

Résumé

The notion of left convergent sequences of graphs introduced by Lov\' asz et al. (in relation with homomorphism densities for fixed patterns and Szemer\'edi's regularity lemma) got increasingly studied over the past $10$ years. Recently, Ne\v set\v ril and Ossona de Mendez introduced a general framework for convergence of sequences of structures. In particular, the authors introduced the notion of $QF$-convergence, which is a natural generalization of left-convergence. In this paper, we initiate study of $QF$-convergence for structures with functional symbols by focusing on the particular case of tree semi-lattices. We fully characterize the limit objects and give an application to the study of left convergence of $m$-partite cographs, a generalization of cographs.
Fichier principal
Vignette du fichier
tree_orders_15_05_07.pdf (405.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01150659 , version 1 (11-05-2015)
hal-01150659 , version 2 (17-09-2015)

Identifiants

Citer

Pierre Charbit, Lucas Hosseini, Patrice Ossona de Mendez. Limits of Structures and the Example of Tree-Semilattices. 2015. ⟨hal-01150659v2⟩
261 Consultations
202 Téléchargements

Altmetric

Partager

More