QF-Limits of Structures and the Example of Tree-Semilattices - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

QF-Limits of Structures and the Example of Tree-Semilattices

Résumé

The notion of left convergence for graphs (in relation with homomorphism densities for fixed patterns and Szemer\'edi’s regularity lemma) introduced by Lov\' asz et al. got increasingly studied over the past $10$ years. Recently, Ne\v set\v ril and Ossona de Mendez introduced a general framework to study the limits of structures based on the converging probability for the structures of the sequence to verify any formula of a given fragment of first order logic for a random assignment of free variables. In this context, a sequence is {\em quantifier-free convergent} (or QF-convergent) if the probability of any equation being satisfied converges. We will give examples, and show how the QF-convergence of colored tree-semilattices can be related to the left convergence of $m$-partite cographs, a generalization of cographs.
Fichier principal
Vignette du fichier
tree_orders_15_05_07.pdf (410.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01150659 , version 1 (11-05-2015)
hal-01150659 , version 2 (17-09-2015)

Identifiants

Citer

Pierre Charbit, Lucas Hosseini, Patrice Ossona de Mendez. QF-Limits of Structures and the Example of Tree-Semilattices. 2015. ⟨hal-01150659v1⟩
261 Consultations
202 Téléchargements

Altmetric

Partager

More