Self-adjoint extensions of differential operators on Riemannian manifolds - Archive ouverte HAL
Article Dans Une Revue Annals of Global Analysis and Geometry Année : 2016

Self-adjoint extensions of differential operators on Riemannian manifolds

Ognjen Milatovic
  • Fonction : Auteur
  • PersonId : 932188
Francoise Truc

Résumé

We study $H=D^*D+V$, where $D$ is a first order elliptic differential operator acting on sections of a Hermitian vector bundle over a Riemannian manifold $M$, and $V$ is a Hermitian bundle endomorphism. In the case when $M$ is geodesically complete, we establish the essential self-adjointness of positive integer powers of $H$. In the case when $M$ is not necessarily geodesically complete, we give a sufficient condition for the essential self-adjointness of $H$, expressed in terms of the behavior of $V$ relative to the Cauchy boundary of $M$.
Fichier principal
Vignette du fichier
diff-operators-28-04-2015.pdf (189.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01149461 , version 1 (07-05-2015)

Identifiants

Citer

Ognjen Milatovic, Francoise Truc. Self-adjoint extensions of differential operators on Riemannian manifolds. Annals of Global Analysis and Geometry, 2016, 49 (1), pp.87-103. ⟨10.1007/s10455-015-9482-0⟩. ⟨hal-01149461⟩
120 Consultations
599 Téléchargements

Altmetric

Partager

More