LARGE DEVIATIONS OF THE THRESHOLD ESTIMATOR OF INTEGRATED (CO-)VOLATILITY VECTOR IN THE PRESENCE OF JUMPS
Résumé
Recently a considerable interest has been paid on the estimation problem of the realized volatility and covolatility by using high-frequency data of financial price processes in financial econometrics. Threshold estimation is one of the useful techniques in the inference for jump-type stochastic processes from discrete observations. In this paper, we adopt the threshold estimator introduced by Mancini where only the variations under a given threshold function are taken into account. The purpose of this work is to investigate large and moderate deviations for the threshold estimator of the integrated variance-covariance vector. This paper is an extension of the previous work in Djellout Guillin and Samoura where the problem has been studied in absence of the jump component. We will use the approximation lemma to prove the LDP. As the reader can expect we obtain the same results as in the case without jump.
Origine | Fichiers produits par l'(les) auteur(s) |
---|