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LARGE DEVIATIONS OF THE THRESHOLD ESTIMATOR OF
INTEGRATED (CO-)VOLATILITY VECTOR IN THE PRESENCE OF

JUMPS

HACÈNE DJELLOUT AND HUI JIANG

Abstract. Recently a considerable interest has been paid on the estimation problem
of the realized volatility and covolatility by using high-frequency data of financial price
processes in financial econometrics. Threshold estimation is one of the useful techniques in
the inference for jump-type stochastic processes from discrete observations. In this paper,
we adopt the threshold estimator introduced by Mancini [18] where only the variations
under a given threshold function are taken into account. The purpose of this work is to
investigate large and moderate deviations for the threshold estimator of the integrated
variance-covariance vector. This paper is an extension of the previous work in Djellout et
al [11]. where the problem has been studied in absence of the jump component. We will
use the approximation lemma to prove the LDP. As the reader can expect we obtain the
same results as in the case without jump.

AMS 2000 subject classifications: 60F10, 62J05, 60J05.

1. Motivation and context

On a filtred probability space (Ω,F , (Ft)[0,1],P), we consider X1 = (X1,t)t∈[0,1] and
X2 = (X2,t)t∈[0,1] two real processes defined by a Lévy jump-diffusion constructed via the
superposition of a Wiener process with drift and an independent compound Poisson pro-
cess. This is one of the first and simplest extensions to the classical geometric Brownian
motion underlying the famous Black-Scholes-Merton framework for option pricing.

More precisely, X1 = (X1,t)t∈[0,1] and X2 = (X2,t)t∈[0,1] are given by
{

dX1,t = b1(t, ω)dt+ σ1,tdW1,t + dJ1,t

dX2,t = b2(t, ω)dt+ σ2,tdW2,t + dJ2,t

(1.1)

for t ∈ [0, 1] where W1 = (W1,t)t∈[0,1] and W2 = (W2,t)t∈[0,1] are two correlated Wiener

processes, with ρt = Cov(W1,t,W2,t), t ∈ [0, 1]. We can writeW2,t = ρtdW1,t+
√

1− ρ2tdW3,t,
where W1 = (W1,t)t∈[0,1] and W3 = (W3,t)t∈[0,1] are independent Wiener processes. J1 and J2

are possibly correlated pure jump processes. We assume here that J1 and J2 have finite jump
activity, that is a.s. there are only finitely many jumps on any finite time interval. A general
Lévy model would contain also a compensated infinte activity pure jump component.

Under our assumption Jℓ is necessarily a compound Poisson processe and it can be written
as

Jℓ,s =

Nℓ,s
∑

i=1

Yℓ,i, s ∈ [0, 1].
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Here Yℓ,i are i.i.d. real random variables having law νℓ/λℓ, where νℓ is the Lévy measure
of Xℓ normalized by the total mass λℓ = νℓ(R− {0}) < +∞, and Nℓ is a poisson process,
independent of each Yℓ,i, and with constant intensity λℓ.

Such a jump-type stochastic process is recently a standard tool, e.g., for modeling asset
values in finance and insurance. The key motivation behind jump-diffusion models is the
incorporation of market ”stocks”, which result in ”large” and sudden changes in the price
of risky security and which can hardly be modeled by the diffusive component.

In this paper we concentrate on the estimation of

[V]t =
(
∫ t

0

σ2
1,sds,

∫ t

0

σ2
2,sds,

∫ t

0

σ1,sσ2,sρsds

)

Over the last decade, several estimation methods for the integrated variance-covariance
Vt have been proposed. We adopt the threshold estimator which is introduced by Mancini
[18] and also by Shimizu and Yoshida [26], independently.

In this method, only the variations under a given threshold function are taken into
account. The specific estimator excludes all terms containing jumps from the realized
co-variation while remaining consistent, efficient and robust when synchronous data are
considered.

Since the seminal work of Mancini [18], several authors have leveraged or extended the
thresholding cencept to deal with complex stochastic models, see Shimizu and Yoshida [26],
or Ogihara and Yoshida [22]. The similar idea is also used by various authors in different
contexts; see, e.g., Äıt-Sahalia et al. [1], [2] and [3], Gobbi and Mancini [15] , Cont and
Mancini [21] , among others.

So, given the synchronous and evenly-spaced observation of the processX1,t0 , X1,t1 , · · · , X1,tn ,
X2,t0 , X2,t1 · · · , X2,tn with t0 = 0, tn = 1, n ∈ N, we consider the following statistics





[nt]
∑

k=1

(∆n
kX1)

2,

[nt]
∑

k=1

(∆n
kX2)

2,

[nt]
∑

k=1

∆n
kX1∆

n
kX2





where ∆n
kXℓ := Xℓ,tk − Xℓ,tk−1

. However this estimate can be highly biased when the
processes Xℓ contain jumps, in fact, as n → ∞ such a sum approaches the global quadratic
variance-covariation

([X1]t, [X2]t, [X1, X2]t)

where

[Xℓ]t :=

∫ t

0

σ2
ℓ,sds+

∑

s≤t

(∆Jℓ,s)
2, and [X1, X2]t :=

∫ t

0

σ1,sσ2,sρsds+
∑

s≤t

∆J1,s∆J2,s.

which also contain the co-jumps, where ∆Jℓ,s = Jℓ,s − Jℓ,s−.
If we take a deterministic function r( 1

n
) at the step 1

n
between the observations, such that

lim
n→∞

r

(

1

n

)

= 0, and lim
n→∞

log n

nr
(

1
n

) = 0.

The function r(·) is a threshold such that whenever |∆n
kXℓ|2 > r( 1

n
), a jump has to occur

within ]tk−1, tk]. Hence we can recover [V]t using the following threshold estimator
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Vn
t (X) = (Qn

1,t(X),Qn
2,t(X), Cn

t (X))

where

Qn
ℓ,t(X) =

[nt]
∑

k=1

(∆n
kXℓ)

21{(∆n
k
Xℓ)2≤r( 1

n
)}

and

Cn
t (X) =

[nt]
∑

k=1

∆n
kX1∆

n
kX21{max2

ℓ=1(∆
n
k
Xℓ)2≤r( 1

n
)}

In the work [14], the authors determine what constitutes a good threshold sequence rn
and they propose an objective method for selecting such a sequence.

In the case that Xℓ have no jumps, this question has been well investigated. The problem
of the large deviation of the quadratic estimator of the integrated volatility (without jumps
and in the case of synchronous sampling scheme) is obtained in the paper by Djellout
et al. [12] and recently Djellout and Samoura [13] have studied the large deviation for
the covariance estimator. Djellout et al. [11] have also investigated the problem of the
large deviation for the realized (co-)volatility vector which allows them to provide the large
deviation for the standard dependence measures between the two assets returns such as the
realized regression coefficients, or the realized correlation.

However, the inclusion of jumps within financial models seems to be more and more
necessary for pratical applications. In this case, Mancini [21] has shown that Vn

t is a
consistent estimators of Vt and has some asymtotic normality respectively. Furthermore,
when σt = σ, she [19] studied the large deviation for the threshold estimator. Jiang [16]
obtained moderate deviations and functional moderate deviations for threshold estimator.
In our paper and by the method as in Mancini [19] and Djellout et al [11], we consider
moderate and functionnal moderate deviation for estimators V n

t and large deviation.

More precisely we are interested in the estimations of

P

(√
n

vn
(Vn

t (X)− [V]t) ∈ A

)

where A is a given domain of deviation, (vn)n>0 is some sequence denoting the scale of
deviation. When vn = 1 this is exactly the estimation of central limit theorem. When
vn =

√
n, it becomes the large deviation. Furthermore, when vn → ∞ and vn = o(

√
n), this

is the so called moderate deviations. In other words, the moderate deviations investigate
the convergence speed between the large deviations and central limit theorem.

Let us recall some basic defintions in large deviations theory. Let (µt)t>0 be a family of
probability on a topological space (S,S) where S is a σ-algebra on S and λt be a nonnegative
function on [1,+∞[ such that limt→∞ λt = +∞. A function I : S → [0,+∞] is said to be
a rate function if it is lower semicontinuous and it is said to be a good rate function if its
level set {x ∈ S; I(x) ≤ a} is a compact for all a ≥ 0.

(µt) is said to satisfy a large deviation principle with speed λt and rate function I if for
any closed set F ∈ S

lim sup
t→∞

1

λt
log µt(F ) ≤ − inf

x∈F
I(x)
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and for any open set G ∈ S

lim sup
t→∞

1

λt
log µt(G) ≥ − inf

x∈G
I(x).

Notations. In the whole paper, for any matrix M , MT and ‖M‖ stand for the transpose
and the euclidean norm of M , respectively. For any square matrix M , det(M) is the deter-
minant of M . Moreover, we will shorten large deviation principle by LDP and moderate
deviation principle by MDP. We denote by 〈·, ·〉 the usual scalar product. For any process Zt,

∆t
sZ stands for the increment Zt−Zs. We use ∆n

kZ for ∆
tn
k

tn
k−1

Z. In addition, for a sequence

of random variables (Zn)n on R
d×p, we say that (Zn)n converges (λn)−superexponentially

fast in probability to some random variable Z if, for all δ > 0,

lim sup
n→∞

1

λn

log P
(

‖Zn − Z‖ > δ
)

= −∞.

This exponential convergence with speed λn will be shortened as

Zn
superexp−→

λn

Z.

The article is arranged in two upcoming sections. Section 2 is devoted to our main results
on the LDP and MDP for the (co-)volatility vector in the presence of jumps. In section 3,
we give the proof of these theorems.

2. Main results

Let Xt = (X1,t, X2,t) be given by (1.1). We introduce the following conditions

(B) for ℓ = 1, 2 b(·, ·) ∈ L∞(dt⊗ P)

(LDP) Assume that for ℓ = 1, 2

• σ2
ℓ,t(1− ρ2t ) and σ1,tσ2,t(1− ρ2t ) ∈ L∞([0, 1], dt).

• the functions t → σℓ,t and t → ρt are continuous.
• let r such that

r

(

1

n

)

−−−→
n→∞

0 and nr

(

1

n

)

−−−→
n→∞

∞.

(MDP) Assume that for ℓ = 1, 2

• σ2
ℓ,t(1− ρ2t ) and σ1,tσ2,t(1− ρ2t ) ∈ L2([0, 1], dt).

• Let (vn)n>1 be a sequence of positive numbers such that

vn −−−→
n→∞

∞ and
vn√
n
−−−→
n→∞

0 and
√
nvnr

(

1

n

)

= O(1)

and for ℓ = 1, 2

r

(

1

n

)

log

(

n

v2n

)

n
max
k=1

∫ tk

tk−1

σ2
ℓ,sds

−→ +∞. (2.1)
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We introduce the following function, which will play a crucial role in the calculation of
the moment generating function: for −1 < c < 1 let for any λ = (λ1, λ2, λ3) ∈ R

3

Pc(λ) :=























−1

2
log

(

(1− 2λ1(1− c2))(1− 2λ2(1− c2))− (λ3(1− c2) + c)2

1− c2

)

if λ ∈ D
+∞, otherwise

(2.2)

where

Dc =

{

λ ∈ R
3, max

ℓ=1,2
λℓ <

1

2(1− c2)
and

2
∏

ℓ=1

(

1− 2λℓ(1− c2)
)

>
(

λ3(1− c2) + c
)2

}

.

(2.3)

Let us present now the main results.

2.1. Moderate deviation. Let us now consider the intermediate scale between the central
limit theorem and the law of large numbers.

Theorem 2.1. For t=1 fixed. Under the conditions (MDP) and (B), the sequence
√
n

vn
(Vn

1 (X)− [V]1)

satisfies the LDP on R
3 with speed v2n and with rate function given by

Imdp(x) = sup
λ∈R3

(

〈λ, x〉 − 1

2
〈λ,Σ1 · λ〉

)

=
1

2

〈

x,Σ−1
1 · x

〉

(2.4)

with

Σ1 =













∫ 1

0
σ4
1,tdt

∫ 1

0
σ2
1,tσ

2
2,tρ

2
tdt

∫ 1

0
σ3
1,tσ2,tρtdt

∫ 1

0
σ2
1,tσ

2
2,tρ

2
tdt

∫ 1

0
σ4
2,tdt

∫ 1

0
σ1,tσ

3
2,tρtdt

∫ 1

0
σ3
1,tσ2,tρtdt

∫ 1

0
σ1,tσ

3
2,tρtdt

∫ 1

0

1

2
σ2
1,tσ

2
2,t(1 + ρ2t )dt













.

Remark 2.1. Under the condition bℓ = 0, we can prove that for all θ ∈ R
3

lim
n→∞

1

v2n
logE

(

e
√
nvn〈θ,Vn

1 (X)−[V ]1〉
)

=
1

2
< θ,Σ1 · θ > .

This gives an alternative proof of the moderate deviation using Gärtner-Ellis theorem.

Remark 2.2. If for some p > 2, σ2
1,t, σ

2
2,t and σ1,tσ2,t(1−ρ2t ) ∈ Lp([0, 1]) and vn = O(n

1
2
− 1

p ),
the condition (2.1) in (MDP) is verified.

Let H be the banach space of R3-valued right-continuous-left-limit non decreasing func-
tions γ on [0, 1] with γ(0) = 0, equipped with the uniform norm and the σ−field Bs

generated by the coordinate {γ(t), 0 6 t 6 1}.
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Theorem 2.2. Under the conditions (MDP) and (B), the sequence
√
n

vn
(Vn

. (X)− [V].)

satisfies the LDP on H with speed v2n and with rate function given by

Jmdp(φ) =















∫ 1

0

1

2

〈

φ̇(t),Σ
−1

t · φ̇(t)
〉

dt if φ ∈ AC0([0, 1])

+∞, otherwise,
(2.5)

where

Σt =











σ4
1,t σ2

1,tσ
2
2,tρ

2
t σ3

1,tσ2,tρt

σ2
1,tσ

2
2,tρ

2
t σ4

2,t σ1,tσ
3
2,tρt

σ3
1,tσ2,tρt σ1,tσ

3
2,tρt

1

2
σ2
1,tσ

2
2,t(1 + ρ2t )











is invertible and Σ
−1

t his inverse such that

Σ
−1

t =
1

det(Σt)















1

2
σ2
1,tσ

6
2,t(1− ρ2t )

1

2
σ4
1,tσ

4
2,tρ

2
t (1− ρ2t ) −σ3

1,tσ
5
2,tρt(1− ρ2t )

1

2
σ4
1,tσ

4
2,tρ

2
t (1− ρ2t )

1

2
σ6
1,tσ

2
2,t(1− ρ2t ) −σ5

1,tσ
3
2,tρt(1− ρ2t )

−σ3
1,tσ

5
2,tρt(1− ρ2t ) −σ5

1,tσ
3
2,tρt(1− ρ2t ) σ4

1,tσ
4
2,t(1− ρ4t )















,

with det(Σt) =
1

2
σ6
1,tσ

6
2,t(1− ρ2t )

3,

and AC0 = {φ : [0, 1] → R
3 is absolutely continuous with φ(0) = 0} .

Remark 2.3. A similar result for the moderate deviations is obtained by Jiang [16] in the

jump case for
(√

n
vn

(

Qn
ℓ,t −

∫ t

0
σ2
ℓ,sds

))

n≥1
.

2.2. Large deviation. Our second result is about the large deviation of Vn
1 (X), i.e. at

fixed time.

Theorem 2.3. Let t = 1 be fixed. Under the conditions (LDP) and (B) , the sequence
Vn
1 (X) satisfies the LDP on R

3 with speed n and with good rate function given by the legendre
transformation of Λ, that is

Ildp(x) = sup
λ∈R3

(〈λ, x〉 − Λ(λ)) , (2.6)

where Λ(λ) =
∫ 1

0
Pρt(λ1σ

2
1,t, λ2σ

2
2,t, λ3σ1,tσ2,t)dt.
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Remark 2.4. Under the condition bℓ = 0, we can calculate the moment generating function
of Vn

1 (X). We obtain that for all θ = (θ1, θ2, θ3)
T ∈ Dρt

lim
n→∞

1

n
E
(

en〈θ,V
n
1 (X)〉) =

∫ 1

0

Pρs

(

θ1σ
2
1,s, θ2σ

2
2,s, θ3σ1,sσ2,s

)

ds.

But the study of the steepness is more difficult.

Let us consider the case where diffusion and correlation coefficients are constant, the rate
function being easier to read. Before that let us introduce the function P ∗

c which is the
Legendre transformation of Pc given in (2.2), for all x = (x1, x2, x3)

P ∗
c (x) :=



























log

( √
1− c2

√

x1x2 − x2
3

)

− 1 +
x1 + x2 − 2cx3

2(1− c2)

if x1 > 0, x2 > 0, x1x2 > x2
3

+∞, otherwise.

(2.7)

Corollary 2.4. We assume that for ℓ = 1, 2 σℓ and ρ are constants. Under the condition
(B), we obtain that Vn

1 (X) satisfies the LDP on R
3 with speed n and with good rate function

IVldp given by

IVldp(x1, x2, x3) = P ∗
ρ

(

x1

σ2
1

,
x2

σ2
2

,
x3

σ1σ2

)

, (2.8)

where P ∗
c is given in (2.7).

Remark 2.5. In the case σℓ is constant, a similar result for the large deviations is obtained
by Mancini [19] in the jump case for

(

Qn
ℓ,1

)

n≥1

Now, we shall extend Theorem 2.3 to the process-level large deviations, i.e. for trajecto-
ries (Vn

t (X), t ∈ [0, 1]) which is interesting from the viewpoint of non-parametric statistics.

Let BV ([0, 1],R3) (shorted in BV ) be the space of functions of bounded variation on
[0, 1]. We identify BV with M3([0, 1]), the set of vector measures with value in R

3. This is
done in the usual manner: to f ∈ BV , there corresponds µf by µf([0, t]) = f(t). Up to this
identification, C3([0, 1]) the set of R3-valued continuous bounded functions on [0, 1], is the
topology dual of BV . We endow BV with the weak-* convergence topology σ (BV, C3([0, 1]))
and with the associated Borel-σ-field Bω. Let f ∈ BV and µf the associated measure in
M3([0, 1]). Consider the Lebesgue decomposition of µf , µf = µf

a+µf
s where µf

a denotes the
absolutely continuous part of µf with respect to dx and µf

s its singular part. We denote by
fa(t) = µf

a([0, t]) and by fs(t) = µf
s ([0, t]).

Theorem 2.5. Under the conditions (LDP) and (B), the sequence Vn
. (X) satisfies the

LDP on BV with speed n and rate function Jldp given for any f = (f1, f2, f3) ∈ BV by

Jldp(f) =

∫ 1

0

P ∗
ρt

(

f ′
1,a(t)

σ2
1,t

,
f ′
2,a(t)

σ2
2,t

,
f ′
3,a(t)

σ1,tσ2,t

)

(2.9)

+

∫ 1

0

σ2
2,tf

′
1,s(t) + σ2

1,tf
′
2,s(t)− 2ρtσ1,tσ2,tf

′
3,s(t)

2σ2
1,tσ

2
2,t(1− ρ2t )

1[t:f ′
1,s>0,f ′

2,s>0,(f ′
3,s)

2<f ′
1,sf

′
2,s]

dθ(t),

where P ∗
c is given in (2.7) and θ is any real-valued nonnegative measure with respect to

which µf
s is absolutely continuous and f ′

s = dµf
s/dθ = (f ′

1,s, f
′
2,s, f

′
3,s).
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3. Proofs

For the convenience of the reader, we recall the following lemma which is the key of the
proofs.

Lemma 3.1. (Approximation Lemma) Theorem 4.2.13 in [10]
Let (Y n, Xn, n ∈ N) be a family of random varibales valued in a Polish space S with

metric d(·, ·), defined on a probability space (Ω,F ,P). Assume

• P(Y n ∈ ·) satisfies the large deviation principle with speed ǫn (ǫn → ∞) and the
good rate function I.

• for every δ > 0

lim sup
n→∞

1

ǫn
log P(d(Y n, Xn) > δ) = −∞.

Then P(Xn ∈ ·) satisfies the large deviation principle with speed ǫn and the good rate
function I.

Before starting the proof, we need to introduce some technical tools. In the case without
jumps, we introduce the following diffusion for ℓ = 1, 2

Dℓ,t =

∫ t

0

σℓ,sdWℓ,s,

where Wℓ,s and σℓ,s are defined as before. We introduce the correspondent estimator

V n
t = (Qn

1,t, Q
n
2,t, C

n
t )

where for ℓ = 1, 2

Qn
ℓ,t =

[nt]
∑

k=1

(∆n
kDℓ)

2 and Cn
t =

[nt]
∑

k=1

∆n
kD1∆

n
kD2.

We recall the following results from Djellout et al. [11]

Proposition 3.2. Under the conditions (B) and (MDP),

(1) the sequence √
n

vn
(V n

1 − [V]1)

satisfies the LDP on R
3 with speed v2n and with rate function given by (2.1).

(2) the sequence √
n

vn
(V n

· − [V]·)

satisfies the LDP on H with speed v2n and with rate function given by (2.2).

Proposition 3.3. Under the conditions (B) and (LDP),

(1) the sequence V n
1 satisfies the LDP on R

3 with speed n and with good rate function
given in (2.6).

(2) the sequence Vn
. satisfies the LDP on BV with speed n and rate function Jldp given

by (2.9).
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3.1. Proof of Theorem 2.1.

We will do the proof in two steps.

Part 1 We start with the case bℓ = 0. In this case, Vn
t (X) = Vn

t (X
0) with X0

ℓ,t =

Xℓ,t −
∫ t

0
bℓ(s, ω)ds and

Qn
ℓ,1(X

0) =

n
∑

k=1

(∆n
kX

0
ℓ )

21{(∆n
k
X0

ℓ
)2≤r( 1

n
)}, ℓ = 1, 2

and

Cn
1 (X

0) =

n
∑

k=1

∆n
kX

0
1∆

n
kX

0
21{max2

ℓ=1(∆
n
k
X0

ℓ
)2≤r( 1

n
)}.

We will prove that √
n

vn

(

Vn
1 (X

0)− V n
1

) superexp−→
v2n

0.

For that, we will prove that for ℓ = 1, 2√
n

vn

(

Qn
ℓ,1(X

0)−Qn
ℓ,1

) superexp−→
v2n

0, (3.1)

and √
n

vn

(

Cn
1 (X

0)− Cn
1

) superexp−→
v2n

0. (3.2)

We start by the proof of (3.1). Since the processes X0
ℓ and Dℓ have independent incre-

ment, by Chebyshev inequality we obtain for all θ > 0

P

(√
n

vn

(

Qn
ℓ,1(X

0)−Qn
ℓ,1

)

> δ

)

≤ e−θδv2n

n
∏

k=1

E

(

e
θ
√
nvn

[

(∆n
k
X0

ℓ
)21

{(∆n
k
Xℓ)

2≤r( 1n )}
−(∆n

k
Dℓ)

2

]
)

.

We have to control each term appearing in the product

E

(

e
θ
√
nvn

[

(∆n
k
X0

ℓ
)21

{(∆n
k
X0

ℓ
)2≤r( 1n )}

−(∆n
k
Dℓ)

2

]
)

≤ ℜ1(k, n) + ℜ2(k, n), (3.3)

where
ℜ1(k, n) := E

(

eθ
√
nvn[(∆n

k
X0

ℓ
)2−(∆n

k
Dℓ)

2]1{(∆n
k
X0

ℓ
)2≤r( 1

n
)}

)

and

ℜ2(k, n) := P

(

(∆n
kX

0
ℓ )

2 > r(
1

n
)

)

.

For the first term, we write

ℜ1(k, n) = E

(

eθ
√
nvn[(∆n

k
X0

ℓ
)2−(∆n

k
Dℓ)

2]1{(∆n
k
X0

ℓ
)2≤r( 1

n
)}|∆n

kNℓ = 0
)

P(∆n
kNℓ = 0)

+E

(

eθ
√
nvn[(∆n

k
X0

ℓ
)2−(∆n

k
Dℓ)

2]1{(∆n
k
X0

ℓ
)2≤r( 1

n
),∆n

k
Nℓ 6=0}

)

. (3.4)

Since Nℓ is independent of Wℓ, we obtain that

ℜ1(k, n) ≤ P

(

(∆n
kDℓ)

2 ≤ r(
1

n
)

)

e−λℓ/n + e
√
nvnθr(

1
n
)(1− e−λℓ/n)

≤ 1 + e
√
nvnθr(

1
n
)(1− e−λℓ/n). (3.5)



10 HACÈNE DJELLOUT AND HUI JIANG

Now we have to control ℜ2(k, n), by the same argument as before we have

ℜ2(k, n) = P

(

(∆n
kX

0
ℓ )

2 > r(
1

n
)|∆n

kNℓ = 0

)

P(∆n
kNℓ = 0)

+P

(

∆n
kX

0
ℓ )

2 > r(
1

n
),∆n

kNℓ 6= 0

)

≤ P

(

(∆n
kDℓ)

2 > r(
1

n
)

)

e−λℓ/n + (1− e−λℓ/n).

From exponential inequality for martingales, it follows that for ℓ = 1, 2,

P

(

(∆n
kDℓ)

2 > r

(

1

n

))

≤ exp

(

− r( 1
n
)

2
∫ tk
tk−1

σ2
ℓ,sds

)

, (3.6)

which implies that

ℜ2(k, n) ≤ exp

(

− r( 1
n
)

2
∫ tk
tk−1

σ2
ℓ,sds

)

+ (1− e−λℓ/n). (3.7)

From (3.3), (3.5) and (3.7), we obtain that

E

(

e
θ
√
nvn

[

(∆n
k
X0

ℓ
)21

{(∆n
k
X0

ℓ
)2≤r( 1n )}

−(∆n
k
Dℓ)

2

]
)

≤ 1 + (1 + e
√
nvnθr(

1
n
))(1− e−λℓ/n)

+ exp

(

− r( 1
n
)

2
∫ tk
tk−1

σ2
ℓ,sds

)

.

Using the hypotheses (MDP), we have

lim sup
n→∞

n

v2n

n
max
k=1

logE

(

e
θ
√
nvn

[

(∆n
k
X0

ℓ
)21

{(∆n
k
X0

ℓ
)2≤r( 1n )}

−(∆n
k
Dℓ)

2

]
)

= 0. (3.8)

So

lim sup
n→∞

1

v2n
log P

(√
n

vn

(

Qn
ℓ,1(X

0)−Qn
ℓ,1

)

> δ

)

≤ −λδ.

Letting λ goes to infinity, we obtain that the right hand of the last inequality goes to
−∞. Proceeding in the same way for −(Qn

ℓ,t(X
0)−Qn

ℓ,t) we obtain (3.1).

Now we have to prove (3.2). For that we have the following decompostion

Cn
1 (X

0)− Cn
1 =

1

2

[

Qn

3,1(X
0)−Qn

3,1

]

− 1

2

[

2
∑

ℓ=1

Qn

ℓ,1(X
0)−Qn

ℓ,1

]

, (3.9)

where

Qn
3,1 =

n
∑

k=1

(∆n
kD1 +∆n

kD2)
2,

and for ℓ = 1, 2

Qn

ℓ,t(X
0) =

n
∑

k=1

(∆n
kX

0
ℓ )

21{max2
ℓ=1(∆

n
k
X0

ℓ
)2≤r( 1

n
)}
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and

Qn

3,1(X
0) =

n
∑

k=1

(∆n
kX

0
1 +∆n

kX
0
2 )

21{max2
ℓ=1(∆

n
k
X0

ℓ
)2≤r( 1

n
)}.

Remark that Qn

ℓ,t(X
0) is a slight modification of Qn

ℓ,t(X
0).

We know that ∆n
kD1 +∆n

kD2 ∼ N (0, β2(k, n)) with

β2(k, n) =

∫ tk

tk−1

σ2
1,sds+

∫ tk

tk−1

σ2
2,sds+ 2

∫ tk

tk−1

σ1,sσ2,sρsds.

For all δ > 0, we have

P

(√
n

vn

∣

∣Cn
1 (X

0)− Cn
1

∣

∣ > δ

)

≤ 3
3

max
ℓ=1

P

(√
n

vn

∣

∣Qn

ℓ,1(X
0)−Qn

ℓ,1

∣

∣ >
2δ

3

)

.

So we obtain (3.2).

Part 2 We have to prove that
√
n

vn

(

Vn
1 (X)− Vn

1 (X
0)
) superexp−→

v2n

0.

We have that
∣

∣Qn
ℓ,1(X)−Qn

ℓ,1(X
0)
∣

∣ ≤ ε(n)Qn
ℓ,1(X

0) +

(

1 +
1

ε(n)

)

Zn
ℓ (3.10)

and
∣

∣Cn
1 (X)− Cn

1 (X
0)
∣

∣ ≤ ε(n)
2

max
ℓ=1

Qn
ℓ,1(X

0) +

(

1 +
1

ε(n)

)

2
max
ℓ=1

Zn
ℓ , (3.11)

where

Zn
ℓ =

n
∑

k=1

(

∫ tk

tk−1

bℓ(s, ω)ds

)2

.

By the condition (B), we have that ‖Zn
ℓ ‖ ≤ 1

n
. We choose ε(n) such that

√
n

vn
ε(n) → 0, vn

√
nε(n) → ∞,

so by the MDP of Qn
ℓ,1(X

0), we obtain the result.

3.2. Proof of Theorem 2.2.

Since the sequence
√
n

vn
(V n

· − [V]·) satisfies the LDP on H with speed v2n and rate func-
tion Jmdp, by Lemma 3.1, it is sufficient to show that:

√
n

vn
sup
t∈[0,1]

∥

∥Vn
t (X

0)− V n
t

∥

∥

superexp−→
v2n

0. (3.12)

Lemma 3.4. Under the condition (MDP), we have

lim
n→∞

√
n

vn
sup
t∈[0,1]

∥

∥EVn
t (X

0)− [V]t
∥

∥ = 0.
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Proof We will prove that for ℓ = 1, 2

lim
n→∞

√
n

vn
sup
t∈[0,1]

∣

∣

∣

∣

EQn
ℓ,t(X

0)−
∫ t

0

σ2
ℓ,sds

∣

∣

∣

∣

= 0. (3.13)

and

lim
n→∞

√
n

vn
sup
t∈[0,1]

∣

∣

∣

∣

ECn
t (X

0)−
∫ t

0

σ1,sσ1,sρsds

∣

∣

∣

∣

= 0. (3.14)

In fact, (3.13) can be done in the same way as in Jiang [16]. It remains to show (3.14).
Using (3.9), we obtain that

∣

∣

∣

∣

ECn
t (X

0)−
∫ t

0

σ1,sσ1,sρsds

∣

∣

∣

∣

≤ 1

2

∣

∣EQn

3,t(X
0)− βt

∣

∣+
2

max
ℓ=1

∣

∣

∣

∣

EQn

ℓ,t(X
0)−

∫ t

0

σ2
ℓ,sds

∣

∣

∣

∣

,

where βt =
∫ t

0
σ2
1,sds +

∫ t

0
σ2
2,sds + 2

∫ t

0
σ1,sσ2,sρsds. So the proof of (3.14) is a consequence

of (3.13) and the fact that

lim
n→∞

√
n

vn
sup
t∈[0,1]

∣

∣EQn

3,t(X
0)− βt

∣

∣ = 0,

which is an adaptation of the proof in Jiang [16].

Proof of Theorem 2.2

For (3.12), we will prove that for ℓ = 1, 2
√
n

vn
sup
t∈[0,1]

∥

∥Qn
ℓ,t(X

0)−Qn
ℓ,t

∥

∥

superexp−→
v2n

0 and

√
n

vn
sup
t∈[0,1]

∥

∥Cn
t (X

0)− Cn
t

∥

∥

superexp−→
v2n

0.

From Lemma 3.4, it follows that as n → ∞
√
n

vn
sup
t∈[0,1]

(

E(Qn
ℓ,t(X

0)−Qn
ℓ,t) ∨ E(Cn

t (X
0)− Cn

t )
)

→ 0. (3.15)

Then, we only need to prove that
√
n

vn
sup
t∈[0,1]

∥

∥Qn
ℓ,t(X

0)−Qn
ℓ,t − E(Qn

ℓ,t(X
0)−Qn

ℓ,t)
∥

∥

superexp−→
v2n

0 (3.16)

and √
n

vn
sup
t∈[0,1]

∥

∥Cn
t (X

0)− Cn
t − E(Cn

t (X
0)− Cn

t )
∥

∥

superexp−→
v2n

0. (3.17)

We start by the proof of (3.16). Remark that
(

Qn
ℓ,t(X

0)−Qn
ℓ,t − E(Qn

ℓ,t(X
0)−Qn

ℓ,t)
)

is
a F[nt]/n-martingale. Then

exp
(

λ
(

Qn
ℓ,t(X

0)−Qn
ℓ,t − E(Qn

ℓ,t(X
0)−Qn

ℓ,t)
))

is a submartigale. By the maximal inequality, we have for any η, λ > 0

P

(√
n

vn
sup
t∈[0,1]

(

Qn
ℓ,t(X

0)−Qn
ℓ,t − E(Qn

ℓ,t(X
0)−Qn

ℓ,t)
)

> η

)

≤ e−λv2nηE exp
(

λ
√
nvn

(

Qn
ℓ,1(X

0)−Qn
ℓ,1 − E(Qn

ℓ,1(X
0)−Qn

ℓ,1)
))
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and

P

(√
n

vn
inf

t∈[0,1]

(

Qn
ℓ,t(X

0)−Qn
ℓ,t − E(Qn

ℓ,t(X
0)−Qn

ℓ,t)
)

< −η

)

≤ e−λv2nηE exp
(

−λ
√
nvn

(

Qn
ℓ,1(X

0)−Qn
ℓ,1 − E(Qn

ℓ,1(X
0)−Qn

ℓ,1)
))

.

Together with (3.8) and (3.15), we have

lim sup
n→∞

1

v2n
log P

(√
n

vn
sup
t∈[0,1]

∣

∣Qn
ℓ,t(X

0)−Qn
ℓ,t − E(Qn

ℓ,t(X
0)−Qn

ℓ,t)
∣

∣ > η

)

≤ −λη.

(3.16) can be obtained by letting λ goes to infinity.
Similarly, we can have (3.17) by (3.8), (3.9) and (3.15).

3.3. Proof of Theorem 2.3.
We will do the proof in two steps.

Step 1 We will prove that

Vn
1 (X

0)− V n
1

superexp−→
n

0.

For that, we will prove that for ℓ = 1, 2

Qn
ℓ,1(X

0)−Qn
ℓ,1

superexp−→
n

0, (3.18)

and
Cn
1 (X

0)− Cn
1

superexp−→
n

0. (3.19)

We start by the proof of (3.18). Since the processes Xℓ and Dℓ have independent incre-
ment, by Chebyshev inequality we obtain for all θ > 0

P
(

Qn
ℓ,1(X

0)−Qn
ℓ,1 > δ

)

≤ e−θnδ
n
∏

k=1

E

(

e
θn

[

(∆n
k
X0

ℓ
)21

{(∆n
k
X0

ℓ
)2≤r( 1n )}

−(∆n
k
Dℓ)

2

]
)

.

Similar to (3.3),

E

(

e
θn

[

(∆n
k
X0

ℓ
)21

{(∆n
k
X0

ℓ
)2≤r( 1n )}

−(∆n
k
Dℓ)

2

]
)

≤ I1(k, n) + I2(k, n),

where

I1(k, n) := E

(

eθn[(∆
n
k
X0

ℓ
)2−(∆n

k
Dℓ)

2]1{(∆n
k
X0

ℓ
)2≤r( 1

n
)}

)

and

I2(k, n) := P

(

(∆n
kX

0
ℓ )

2 > r(
1

n
)

)

From (3.4), (3.5) and (3.7), it follows that

I2(k, n) ≤ exp

(

− r( 1
n
)

2
∫ tk
tk−1

σ2
ℓ,sds

)

+ (1− e−λℓ/n).

and

I1(k, n) ≤ 1 + E

(

eθn[(∆
n
k
X0

ℓ
)2−(∆n

k
Dℓ)

2]1{(∆n
k
X0

ℓ
)2≤r( 1

n
),∆n

k
Nℓ 6=0}

)

.
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Let (αn) be a sequence of real numbers such that αn → 0, which will be chosen latter.
We have

E

(

eθn(∆
n
k
X0

ℓ
)21{(∆n

k
X0

ℓ
)2≤r( 1

n
),∆n

k
Nℓ 6=0}

)

= F1(k, n) + F2(k, n),

where

F1(k, n) := E

(

eθn(∆
n
k
X0

ℓ
)21{(∆n

k
X0

ℓ
)2≤r( 1

n
),∆n

k
Nℓ 6=0,|∆n

k
Jℓ|≤αn}

)

and

F2(k, n) := E

(

eθn(∆
n
k
X0

ℓ
)21{(∆n

k
X0

ℓ
)2≤r( 1

n
),∆n

k
Nℓ 6=0,|∆n

k
Jℓ|>αn}

)

.

We have to prove that for ℓ = 1, 2 limn→∞maxnk=1 Fℓ(k, n) → 0. We start with F2(k, n).

From condition (LDP), it follows that nmaxnk=1

∫ tk
tk−1

σ2
ℓ,sds < +∞.

So for all θ > 0, we choose

αn =

(

2

√

θn
n

max
k=1

∫ tk

tk−1

σ2
ℓ,sds+ 1

)

√

r(1/n).

Then it is easy to see that

F2(k, n) ≤ eθnr(
1
n
)
P






|Z| ≥

2
√

θnmaxnk=1

∫ tk
tk−1

σ2
ℓ,sds

√

r( 1
n
)

√

∫ tk
tk−1

σ2
ℓ,sds






,

where Z is a standard Gaussian random variable. As a consequence of the well-known

inequality
∫ +∞
y

e−
z2

2 dz ≤ (1/y)e−
y2

2 , for all y > 0, we obtain

F2(k, n) ≤ eθnr(
1
n
)

√

2

π

1
√

θnr(1/n)
e−2θnr( 1

n
).

So for n large enough and θ > 1, we have

n
max
k=1

F2(k, n) ≤ e−θnr( 1
n
) −→ 0 as n → ∞.

Now we will control F1(k, n). Using the fact that

θn(∆n
kX

0
ℓ )

2 ≤ θn

[

1

4θnmaxnk=1

∫ tk
tk−1

σ2
ℓ,sds

(∆n
kDℓ)

2 + 4θn
n

max
k=1

∫ tk

tk−1

σ2
ℓ,sds(∆

n
kJℓ)

2

]

,

we have with the same choose of the sequence αn, by independence of ∆n
kDℓ and ∆n

kJℓ and
Cauchy-Schwarz inequality that

F1(k, n) ≤ E



e

(∆n
k
Dℓ)

2

4maxn
k=1

∫ tk
tk−1

σ2
ℓ,s

ds



E

(

e
4θ2

(

nmaxn
k=1

∫ tk
tk−1

σ2
ℓ,s

ds
)

n(∆n
k
Jℓ)

2

1{|∆n
k
Jℓ|≤αn}1{∆n

k
Nℓ 6=0}

)

≤ E

(

e
Z2

4

)

E
1
2

(

e8θ
2n(∆n

k
Jℓ)

2

1{|∆n
k
Jℓ|≤αn}

)

P
1
2 (∆n

kNℓ 6= 0) .

From Mancini [19] page 877, we conclude that

lim
n→∞

n
max
k=1

E

(

e8θ
2n(∆n

k
Jℓ)

2

1{|∆n
k
Jℓ|≤αn}

)

< ∞.
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Since Z is a standard Gaussian random variable, we conclude that

E
(

e
Z2

4

)

< ∞.

So that maxnk=1 F1(k, n) ≤ C(1− e−λℓ/n) −→ 0 as n → ∞.
Therefore,

lim
n→∞

1

n
log

n
∏

k=1

E

(

e
θn

[

(∆n
k
X0

ℓ
)21

{(∆n
k
X0

ℓ
)2≤r( 1

n )}
−(∆n

k
Dℓ)

2

]
)

= 0,

which implies that for any θ > 1

lim
n→∞

1

n
log P

(

Qn
ℓ,1(X

0)−Qn
ℓ,1 > δ

)

≤ −θδ.

Letting θ goes to infinity, we obtain that the left term in the last inequality goes to −∞.
And similarly, by doing the same calculation with

P
(

Qn
ℓ,1(X

0)−Qn
ℓ,1 < −δ

)

,

we can get (3.18).
To prove (3.19), we use the decomposition (3.9) and an adaptation of the proof of (3.18).

Step 2 We will prove that

Vn
1 (X)− Vn

1 (X
0)

superexp−→
n

0.

For that we use (3.10) and (3.11) and we choose ε(n) such that nε(n) → 0 to obtain the
result.

3.4. Proof of Theorem 2.5.
We will prove that for ℓ = 1, 2

sup
t∈[0,1]

∥

∥Qn
ℓ,t(X

0)−Qn
ℓ,t

∥

∥

superexp−→
n

0 and sup
t∈[0,1]

∥

∥Cn
t (X

0)− Cn
t

∥

∥

superexp−→
n

0.

To do that we use the same argument as in the proof of Theorem 2.2 and the fact that

sup
t∈[0,1]

∣

∣E(Qn
ℓ,t(X

0)−Qn
ℓ,t))
∣

∣ −→ 0.
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[14] Figueroa-López, J. E., and Nisen, J. Optimally thresholded realized power variations for Lévy
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