Unsupervised color-image segmentation by multicolor space iterative pixel classification - Archive ouverte HAL Access content directly
Journal Articles Journal of Electronic Imaging Year : 2015

Unsupervised color-image segmentation by multicolor space iterative pixel classification

Abstract

We propose a color-image segmentation algorithm by unsupervised classification of pixels. The originality of the proposed approach consists in iteratively identifying pixel classes by taking into account both the pixel color distributions in several color spaces and their spatial arrangement in the image. In order to overcome the difficult problem of the color space choice, the algorithm selects the color space that is well suited to construct the class at each iteration step. The selection criterion is based on connectedness and color homogeneity measures of pixel subsets. In order to tune the sensitivity of segmentation, we introduce a hierarchical criterion that allows us to segment images with different numbers of regions as human observers do. Experiments carried out on the well-known Berkeley segmentation dataset show that this multicolor space approach succeeds in constructing classes that effectively correspond to regions in the image.
No file

Dates and versions

hal-01145224 , version 1 (23-04-2015)

Identifiers

Cite

Nicolas Vandenbroucke, Laurent Busin, Ludovic Macaire. Unsupervised color-image segmentation by multicolor space iterative pixel classification. Journal of Electronic Imaging, 2015, 24 (2), pp.023032. ⟨10.1117/1.JEI.24.2.023032⟩. ⟨hal-01145224⟩
154 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More