Learning user habits for semi-autonomous navigation using low throughput interfaces - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Learning user habits for semi-autonomous navigation using low throughput interfaces

Xavier Perrin
  • Fonction : Auteur
  • PersonId : 965691
Francis Colas
Cédric Pradalier

Résumé

This paper presents a semi-autonomous navigation strategy aimed at the control of assistive devices (e.g. an intelligent wheelchair) using low throughput interfaces. A mobile robot proposes the most probable action, as analyzed from the environment, to a human user who can either accept or reject the proposition. In case of rejection, the robot will propose another action, until both entities agree on what needs to be done. In a known environment, the system infers the intended goal destination based on the first executed actions. Furthermore, we endowed the system with learning capabilities, so as to learn the user habits depending on contextual information (e.g. time of the day or if a phone rings). This additional knowledge allows the robot to anticipate the user intention and propose appropriate actions, or goal destinations.
Fichier principal
Vignette du fichier
2011_Perrin_SMC_Learning.pdf (611.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01142698 , version 1 (15-04-2015)

Identifiants

Citer

Xavier Perrin, Francis Colas, Cédric Pradalier, Roland Siegwart, Ricardo Chavarriaga, et al.. Learning user habits for semi-autonomous navigation using low throughput interfaces. IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2011, Anchorage, United States. ⟨10.1109/ICSMC.2011.6083633⟩. ⟨hal-01142698⟩
36 Consultations
78 Téléchargements

Altmetric

Partager

More