Analysis of a contact problem with normal compliance, finite penetration and nonmonotone slip dependent friction - Archive ouverte HAL
Article Dans Une Revue Communications in Contemporary Mathematics Année : 2014

Analysis of a contact problem with normal compliance, finite penetration and nonmonotone slip dependent friction

Résumé

We consider a mathematical model which describes the frictional contact between a linearly elastic body and an obstacle, the so-called foundation. The process is static and the contact is modeled with normal compliance condition of such a type that the penetration is restricted with unilateral constraint. The friction is modeled with a nonmonotone law in which the friction bound depends both on the tangential displacement and on the value of the penetration. In order to approximate the contact conditions, we consider a regularized problem wherein the contact is modeled by a standard normal compliance condition without finite penetrations. For each problem, we derive a variational formulation and an existence result of the weak solutions of regularized problems is obtained. Next, we prove the convergence of the weak solutions of regularized problems to the weak solution of the initial nonregularized problem. Finally, we provide a numerical validation of this convergence result. To this end we introduce a discrete scheme for the numerical approximation of the frictional contact problems. The solution of the resulting nonsmooth and nonconvex frictional contact problems is found, basing on approximation by a sequence of nonsmooth convex programming problems. Some numerical simulation results are presented in the study of an academic two-dimensional example.
Fichier principal
Vignette du fichier
barboteu2014.pdf (660.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01142148 , version 1 (03-05-2024)

Licence

Identifiants

Citer

Mikaël Barboteu, Krzysztof Bartosz, Piotr Kalita, Ahmad Ramadan. Analysis of a contact problem with normal compliance, finite penetration and nonmonotone slip dependent friction. Communications in Contemporary Mathematics, 2014, 16 (01), ⟨10.1142/S0219199713500168⟩. ⟨hal-01142148⟩

Collections

UNIV-PERP LAMPS
138 Consultations
22 Téléchargements

Altmetric

Partager

More