Vertex-based Compatible Discrete Operator schemes on polyhedral meshes for advection-diffusion equations - Archive ouverte HAL
Article Dans Une Revue Computational Methods in Applied Mathematics Année : 2016

Vertex-based Compatible Discrete Operator schemes on polyhedral meshes for advection-diffusion equations

Résumé

We devise and analyze vertex-based, Péclet-robust, lowest-order schemes for advection-diffusion equations that support polyhedral meshes. The schemes are formulated using Compatible Discrete Operators (CDO), namely primal and dual discrete differential operators, a discrete contraction operator for advection, and a discrete Hodge operator for diffusion. Moreover, discrete boundary operators are devised to weakly enforce Dirichlet boundary conditions. The analysis sheds new light on the theory of Friedrichs' operators at the purely algebraic level. Moreover, an extension of the stability analysis hinging on inf-sup conditions is presented to incorporate divergence-free velocity fields under some assumptions. Error bounds and convergence rates for smooth solutions are derived, and numerical results are presented on three-dimensional polyhedral meshes.
Fichier principal
Vignette du fichier
CDO_CantinErn.pdf (3.55 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01141290 , version 1 (11-04-2015)
hal-01141290 , version 2 (14-04-2015)
hal-01141290 , version 3 (18-02-2016)

Identifiants

  • HAL Id : hal-01141290 , version 3

Citer

Pierre Cantin, Alexandre Ern. Vertex-based Compatible Discrete Operator schemes on polyhedral meshes for advection-diffusion equations. Computational Methods in Applied Mathematics, 2016, 16 (2), pp.187-212. ⟨hal-01141290v3⟩
474 Consultations
295 Téléchargements

Partager

More