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Abstract

We devise and analyze vertex-based, Péclet-robust, lowest-order schemes for advection-diffusion equa-
tions that support polyhedral meshes. The schemes are formulated using Compatible Discrete Operators
(CDO), namely primal and dual discrete differential operators, a discrete contraction operator for advec-
tion, and a discrete Hodge operator for diffusion. Moreover, discrete boundary operators are devised to
weakly enforce Dirichlet boundary conditions. The analysis sheds new light on the theory of Friedrichs’
operators at the purely algebraic level. Moreover, an extension of the stability analysis hinging on inf-
sup conditions is presented to incorporate divergence-free velocity fields under some assumptions. Error
bounds and convergence rates for smooth solutions are derived, and numerical results are presented on

three-dimensional polyhedral meshes.

Keywords. Polyhedral meshes, compatible discretization, advection, diffusion, Peclet robustness, divergence-

free velocity
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1 Introduction

The goal of this work is to approximate the scalar-valued function p : {2 — R solving the following advection-

diffusion problem:

—V:(AVp) +B-Vp=s ae. inQ, (1.1a)

p=pp ae. ondf, (1.1b)

where (2 is a bounded polyhedral connected subset of R? with boundary 99 and outward unit normal
n, A a bounded, symmetric, uniformly positive-definite tensor-valued field in €2, 8 a vector-valued field
in Whe(Q), s € L%(Q), and pp € H'(99), t > 1. We use boldface fonts for vector- and tensor-valued
quantities. In addition to the classical assumption on the sign of V-8, we also include in our analysis an
extension to the case of divergence-free advection; see below. This extension is by no means straightforward
and is rarely addressed in the literature. We also briefly discuss the (simpler) variants where the advection

term is written in divergence form and where there is a zero-order reactive term. Of particular interest is the
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robustness of the approximation with respect to the local Péclet number measuring the relative magnitude
of advection and diffusion scaled by the local mesh size. Hence, we also study the pure advection problem
with A vanishing uniformly in (1.1a) and boundary condition (1.1b) modified so as to prescribe the Dirichlet
condition only on the inflow part of 0.

The goal of the present work is to devise and analyze a lowest-order, vertex-based scheme for the
advection-diffusion problem (1.1) that is robust with respect to the Péclet number and that supports poly-
hedral meshes. The present scheme can be viewed as a polyhedral extension of Finite Element /Finite Volume
(FE/FV) schemes which combine a finite element treatment of the diffusive term and an upwind finite vol-
ume treatment of the advection term. Such schemes were devised by Baba and Tabata [3] for triangular
meshes using dual cells around vertices as control volumes and by Ohmori and Ushijima [33] using diamond
cells around edges. Schemes of these type have been considered more recently by Angot et al. [1], Bochev
et al. [6], Hilhorst and Vohralik [27], see also references therein.

A salient feature of the present work is that we investigate a possible way of relaxing the usual assumption

on the advection velocity which in the present setting states that
(B1) There exists a real number 7 > 0 such that —V-8 > 77! a.e. in Q.

This assumption, which is classically used to achieve L?-stability by means of a coercivity argument, does not
allow one to consider divergence-free advection velocities (a simple example could be a constant advection

velocity). In the present work, we extend the analysis so as to cover the following situation:

(B2) V-8 = 0, and there exist a real number 7 > 0 and a function ¢ € W1 (), such that ¢ > 1 and
~V-(¢(B) > 71 ae. in Q.

Assumption (82) has been considered in Devinatz et al. [18] and more recently in Ayuso and Marini [2] for
discontinuous Galerkin (dG) schemes and in Deuring et al. [17] for FE/FV schemes. Sufficient conditions
on the existence of the function ¢ can be found in [2]; loosely speaking, assumption (82) is reasonable when
the velocity field B8 has no closed curves and no stationary point in 2. We also notice that the lower bound
¢ > 1 is not restrictive since the condition —V-(¢8) > 7! is invariant by adding a constant to (. Moreover,
the function ( is non-dimensional, and the real number 7 in both (81) and (82) represents a reference time.
The analysis with assumption (£82) is more complex than with assumption (81) since stability now hinges
on an inf-sup condition, and the handling of diffusive terms is delicate.

We formulate our schemes using the Compatible Discrete Operator (CDO) framework studied in [9] for
diffusion problems and in [10] for the Stokes equations; see also Hiptmair for discrete Hodge operators [28, 29],
Tarhasaari et al. [36] and Bossavit [11, 12]. The motivation for using the CDO formalism is twofold: we can
hinge on previous work concerning diffusion, and the present schemes can serve as a starting point for CDO
schemes discretizing the convective term in the Navier—Stokes equations. The algebraic viewpoint of CDO
schemes also sheds new light on the theory of Friedrichs’ operators [21, 22, 23] in the context of (discrete)
contraction operators.

Our work contains two new contributions concerning CDO schemes. The first one is to devise a CDO
scheme for pure advection. Here, the key idea is to build a discrete contraction (or interior product)
operator that is the discrete counterpart of the map g — B-g. This way, the advective derivative 8-Vp
can be discretized by two distinct operators: a (well-known) topological discrete gradient operator mapping
degrees of freedom (DoFs) attached to vertices to DoFs attached to edges and the above discrete contraction

operator. Our second new contribution is to devise a CDO scheme for diffusion with weakly enforced
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boundary conditions. Indeed, as for stabilized finite element and dG methods, weak enforcement of Dirichlet
conditions yields better results for under-resolved outflow layers. To this purpose, we extend Nitsche’s
boundary penalty method [32] to the CDO setting.

Let us put our work in perspective with existing schemes. For pure advection, we emphasize that
the CDO scheme is essentially an upwind finite volume scheme on a dual mesh with vertex-based con-
trol volumes. Thus, the analysis uses similar techniques to those used for dG methods; see Johnson and
Pitkdranta [30], Brezzi et al. [14], and [20]. We also mention the following recent approaches to discretize
pure advection equations in the setting of differential geometry. Using the notion of extrusion defined by
Bossavit in [13], Heumann and Hiptmair [25] and Mullen et al. [31] proposed a discretization of interior prod-
ucts respectively on triangular and Cartesian meshes. Stabilized Galerkin methods for differential forms are
considered by Heumann and Hiptmair [26]. Palha et al. [34] proposed another approach using the wedge
product as the adjoint operator of the interior product. Furthermore, for advection-diffusion, the present
CDO scheme is, to our knowledge, the first polyhedral discretization that is only vertex-based and that is
robust for dominant advection up to the limit of zero diffusion. Another framework for vertex-based poly-
hedral schemes for elliptic PDEs is that of Virtual Element Methods (VEM), see Beirao da Veiga et al. [4].
The difference is that we use explicit reconstruction functions (typically piecewise constant on subcells) and
we treat dominant advection, but our schemes are only of lowest-order. A first alternative to vertex-based
schemes are face-based schemes: an arbitrary-order, Péclet-robust, face-based scheme for advection-diffusion
has been recently analyzed by Di Pietro et al. [19] (see also Beirdao da Veiga et al. [5] for the lowest-order
and diffusion-dominated case). Another alternative is to use a cell-based dG method, but the treatment
of diffusion requires introducing interior penalty parameters and using order k > 1 in cells leading to an
increase of DoFs.

The material is organized as follows. In Section 2, we introduce the main notation for the discrete
setting. In Section 3, we devise and analyze CDO schemes for pure advection. In Section 4, we treat
advection-diffusion. Both sections 3 and 4 focus on assumption (£81) for the velocity field for simplicity. In
Section 5, we revisit the analysis in the case of a divergence-free velocity field under assumption (£2). In
Section 6, we present numerical results on three-dimensional polyhedral meshes. Finally, in Section 7, we

collect some proofs of technical results.

2 Discrete setting

In this section, we introduce the main ingredients underlying the discrete setting: mesh entities, degrees of
freedom, and discrete differential operators. For brevity, we focus on the ideas needed in what follows; a

broader presentation can be found in Bossavit [11, 12], Tonti [37] and, more recently, in Bonelle [7].

2.1 Mesh entities

The primal mesh of the three-dimensional domain 2 is denoted M := {V,E,F,C}, where V collects the
mesh vertices generically denoted v (0-cells), E collects edges denoted e (1-cells), F collects faces denoted
f (2-cells), and C collects cells denoted ¢ (3-cells). The mesh M has the structure of a cellular complex in
the sense that the boundary of a k-cell in M, 1 < k < 3, can be decomposed into (k — 1)-cells in M, see
Christiansen [15]. All the primal mesh entities are oriented; in what follows, we only need to assign a fixed

orientation to any edge e € E by means of a unit tangent vector ..
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CDO schemes are formulated by considering a dual mesh M := {\N/, E, F, 6} such that there is a one-to-
one pairing between primal vertices and dual cells, primal edges and dual faces, and so on (see Figure 1).
In particular, f(e) denotes the dual face associated with the primal edge e € E, and &(v) the dual cell
associated with the primal vertex v € V. Dual mesh entities are oriented by the associated primal entity;
for instance, n e is the unit normal vector to f (e) oriented by t.. There are many possibilities to build a
dual mesh. In this work, we assume that primal faces are planar and star-shaped w.r.t. their barycenter and
that primal cells are star-shaped w.r.t. their barycenter, and we consider the fully barycentric dual mesh

built using barycenters of all the primal mesh entities.

i c(v \> 7
e i /r%
P -
,56“.15(6’)i ””””””””” ‘ |
\/

Figure 1: Hlustration of primal and dual mesh entities

In what follows, we assume that the meshes M and M satisfy a regularity requirement stating that there
exists a common simplicial sub-complex of M and M (i.e., any k-simplex, 1 < k < 3, in this sub-complex
belongs to only one k-cell of M and of M) such that all the k-simplices are shape-regular in the usual sense of
Ciarlet and any k-cell of M or M contains a uniformly bounded number of k-simplices. This mesh regularity
assumption is only needed to analyze the schemes, but not for implementation. For any primal or dual mesh
entity xz, h, denotes the diameter of x; moreover, when deriving convergence rates for smooth solutions,
we use h to denote the largest primal cell diameter. To alleviate the notation, we abbreviate A < B the
inequality A < ¢B with positive constant ¢ whose value can change at each occurrence as long as it is
uniform with respect to the mesh-size and the model parameters.

Since boundary conditions are enforced weakly in this work, we consider mesh entities at the boundary.
The trace of the primal mesh M at the boundary 9 defines a cellular complex M? := {V? E? F?} where
V? collects all the primal vertices lying at the boundary, and so on. Instead, the dual mesh has no entities
lying at the boundary, so that we introduce an additional set of dual faces F? = {f?(v)|v € V?} with
F2(v) := 8¢(v) N HQ; observe the one-to-one pairing between V2 and F?.

2.2 Degrees of freedom

The degrees of freedom (DoFs) of discrete fields are attached to mesh entities according to their physical
nature. For instance, the degrees of freedom of a discrete potential field (0-cochain) are attached to vertices,
either primal or dual ones. In this work, we focus on vertex-based CDO schemes where these DoFs are

attached to primal vertices. For a discrete potential q, we use the notation q € V = R#(V) | where V is the
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vector space composed of DoFs attached to primal vertices and #(V) denotes the cardinality of the set V.
We write q, for the value of q attached to the vertex v € V. We also consider discrete circulation fields (1-
cochains) in € (attached to primal edges), discrete flux fields (2-cochains) in F (attached to dual faces), and
discrete density fields (3-cochains) in C (attached to dual cells). Owing to the one-to-one pairing between
primal and dual mesh entities, the vector spaces V and C are isomorphic, as well as the vector spaces £ and
F. This leads us to define the algebraic duality products [q,s] vs = 2vev QuSe(v) for all (g9,5) € V x CN, and
[g, b],5 = eer 8:b f,) for all (g, d) € € x F.

To weakly enforce boundary conditions, we consider discrete fields at the boundary, and with obvious
notation, we introduce the isomorphic vector spaces V? and Fo, along with the algebraic duality product
[a?, $?] wHo = Y vevo qg(l);’;a(v). Furthermore, for all q € V, we use the notation q? € V? with qf = q, for
all v € V7, i.e., q2 collects the DoFs of q attached to boundary vertices.

To measure the approximation error resulting from CDO schemes and to discretize the source terms
and boundary conditions, we define DoFs for continuous fields. One possibility is to consider the classical de
Rham maps (we also consider other choices below) for smooth enough fields. In what follows, we consider
the maps Ry : Sp(€2) =V, Rg : Se(2) = &, Rz: S%() — F and Rz 55() — C such that

Ry(p))e = p(v) forall v eV,  (Re(g))e = /te-g de foralle € E,

e

(Rz(9)) ;= /fnf'ci? df forall feF,  (Rs(s))e = /Esdé for all & € C.

Possible choices for the domains of the de Rham maps are Sy(Q) = H*(Q) with s > 3, Sg(Q) = H*(Q)
with s > 1 or Sg() = {g € LP(Q2), Vxg € L'(Q)} with p > 2 and ¢ > 1, and S%(Q) = H*(Q?) with s > :
or S=() ={¢ € L?(Q), V-¢ € L?*(Q)} with p > 2 and Sz = LY(9). At the boundary, we use the maps
Ryo : Syo(0Q) = V° and Rz, : §5,(09) — F? such that

(Ryo(p))y = p(v) for all v € V2, (Rzs(0)) jo = /fa pdf forall f7 e F?,
with Syo(09) = HY(99), t > 1, and S%,(09Q) = L'(99).

2.3 Discrete differential operators

For all v € V and all e € E, we set ¢, = 1 if v is the extremity of e toward which . points, ¢, = —1
if v is the other extremity of e, and ¢, = 0 if v is not an extremity of e. The discrete gradient operator
GRAD : V — & is defined such that (GRAD(q))e = > ,ev tvedu for all g € V; note that the algebraic
representation of GRAD is a rectangular matrix with entries in {0,£1}. We also define a discrete dual
divergence operator DIV : F — C such that (ﬁ/(d}))g(g) = Zf(e)ef Li(e).io) P e for all ¢ € F, with
Li(e)iw) = —tve- Observe that ¢z, =1 (resp., -1) if~f(e) is a face of the dual cell é(v) such that ng
points outward (resp., inward) ¢(v), and Li(eye(w) = 01 f(e) is not a face of é(v).

The following discrete adjunction property holds:

[GRAD(q), ¢],; = —[a,DIV(d)] .z, V(a,d) €V x F. (2.1)
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Other important properties are the two following commuting properties with the de Rham maps:

GRAD(Ry(p)) = Re(Vp), Vp € Sy(9), (2.2a)
[a,Rz(V-¢)],z = [0, DIV(Rz(9))],z + [a”, Rzo(n@)] 50, V& € S7(Q), VaeV. (2.2b)

Remark 2.1 (Boundary term). We have chosen the above definition of DIV since it is naturally associated
with the dual mesh where dual cells attached to boundary vertices are, by definition, not closed by dual
faces. An alternative choice is to modify the definition of DIV to include dual boundary faces attached to

primal boundary vertices; by doing so, the boundary term appears in (2.1) and no longer in (2.2b).

2.4 Restriction to primal cells and boundary faces

It is convenient to localize discrete objects to a primal cell or to a boundary face. Let ¢ € C. We define
the local subsets V. := {v € V | v € dc} (collecting the vertices of the cell ¢) and E, := {e € E | e C 0c}
(collecting the edges of the cell ¢). For all e € E., we define f.(e) := f(e) Nc as the portion of the dual face
f(e) inside ¢ (see Figure 2, left panel), and we set F, := {f.(e); e € E.}. The vector space &, is composed
of the DoFs of discrete circulation fields g € £ attached to E.; similarly for V. and for ]?c. The de Rham
maps Rg, and Ry are such that (Re.(9))e = [.(te-g) de for all e € E,, and (Rfc(d)))f = [;{(n;9) df for all
f € F.. The local discrete gradient operator GRAD, : V., — &, is defined similarly to GRAD. We also define

the following local norms:

lallzy, ==h2 > gz, lgle, =he Y &, (2.3)
vEV, ecE.

for all q € V. and all g € &. The global counterparts of these norms are assembled cell-wise as [|q|3, :=
Seccllally, and Jgl3s = Secclgls, for all g € V and all g € €.

Let now f € F? be a primal boundary face. We define the local subset V4 = {v € V?|v € 9f}, collecting
boundary vertices attached to f. For all v € V§, we define f7(v) := f?(v) N f as the portion of the dual
face f?(v) inside f (see Figure 2, right panel), and we set F¢ := {ff(v); v € V3}. The vector space V}

is composed of the DoFs of discrete boundary potential fields q? attached to V9; similarly for F 7. The de
Rham map R%? is such that (Rf?(d)))fa = ffa $df? for all f2 e f‘j’f

Figure 2: Illustration of local mesh entities for a cell (left) and a boundary face (right)
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3 Pure advection

This section is concerned with the derivation and analysis of vertex-based CDO schemes for the pure

advection problem

B-Vp=s a.e. in(Q, (3.1a)
p=pp ae ondQ”, (3.1b)

where B satisfies assumption (81), and 9QF := {z € 9Q|£B-n(xr) > 0} correspond to the inflow (927)
and outflow (9Q1) parts of the boundary (8 can be tangential to some part of the boundary). In what
follows, we consider the positive and negative parts of 8-n defined as (8-n)* = %(\Bn\ + Bn) > 0. We
introduce the graph space V3(Q) = {q € L*(Q); B-Vq € L*(Q2)}; functions in the graph space have a trace
in L2(|8-n|;00) provided 902~ and 00" are well separated (see [21]). In this context, a well-posed weak
formulation of problem (3.1) (see [21, 20]) is as follows: Find p € Vg(€2) such that

as(p,q) = /Q gs A2 + /6 adp o, (3.2)

for all ¢ € V3(f2), with boundary flux ¢p = (8-n) pp, and with bilinear form

ag(p,q) Z/QQ(ﬂ-Vp) dQJr/aQ q(B-m)"p dOQ2. (3.3)

Note that the boundary integrals vanish outside 92~ .

3.1 CDO scheme

Vertex-based CDO schemes for pure advection are built using two discrete operators: a discrete contraction
operator IffN: & — C, which is the discrete counterpart of the map g — (-g, and a discrete boundary Hodge
operator H? : V? — F? (indexed by a surface function o € L°(9€)) which is the discrete counterpart of
the map p — ap at the boundary. Using these operators, the following discrete problem can be formulated:
Find p € V such that

As(p,a) = [a,s] z + [a”.dp] 30,  VaeV, (3.4)

with bilinear form such that

As(p,q) = [a,15°(GRAD(p))] ; + [a”, HY - (P50 (3.5)

and where we have set s := R3(s) and ¢p := Rz;(¢p). A synthetic presentation of the scheme (3.4) is the
so-called Tonti diagram shown in Figure 3.
In the spirit of Friedrichs operators [21, 23], we assume that there is a second discrete contraction operator

IE; , which is the discrete counterpart of the map p — Bp, and such that the following two properties hold:

(I1) [Discrete Leibniz rule] The bilinear map on V x V such that

[P. H"%.5(@)] ¢ := [P 15 (GRAD(a))] z — [P, DIV(IE™(@))] ,z = [P*: Hpn (@) 500 (3:6)

is symmetric and satisfies [p, H‘iavﬂ(q)]}va > (ess infq —V-B)|lqll3,,, for all g € V, so that H‘igvﬂ is

monotone under assumption (81); see Remark 3.1 below for the boundary term in (3.6).
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p? € V? |« pEVI— GRAD —|g€é&

o
H(ﬂ n)~ p II‘Z‘C

V R
Fo RHS 5651

Figure 3: Tonti diagram of the vertex-based CDO scheme for pure advection

(I2) [Discrete integration by parts] The bilinear map on V x V such that

(P, W upwg = [P 15 (GRAD(@))] 5 + [a, DIV (p))] . (3.7)
defines a semi-inner product.

Concerning the discrete boundary Hodge operator, we assume the following:

(H?) For all « € L>*(99Q), HY, is self-adjoint, and it depends linearly and monotonically on « (i.e., @ > o/ a.e.
in 9Q implies that H, > H?, in the sense of quadratic forms), so that whenever a > 0, [q?, H,(p?)]

defines a semi-inner product on V? x V?.

vFH?

Remark 3.1 (Discrete contraction operator). Recalling from Remark 2.1 that the discrete dual divergence
operator DIV does not involve faces on the boundary 02, property (I1) is the discrete counterpart of
the Leibniz formula — [, p(V-8)qdQ = [op(B-Vq)dQ — [opV-(Bq)dS), where the two rightmost terms
in (3.6) form together the discrete counterpart of [, pV-(B8¢q) dS2. Furthermore, property (12) is the discrete
counterpart of [, p(8-Vq)dQ2 + [ qV-(Bp)dQ2 — [55,q(B-1)pdd2 = 0. At the discrete level, this quantity
can be non-zero owing to the use of stabilization We also notice that the symmetry of the map (p, q)upw’ 3
results from (p, q)upwﬁ —{q, p>upw 5= = [p,H"%. ﬂ(q ]] - [a, H‘jcv B( )] = 0 where we have used the self-
adjointness of H%, and of H'S v.p- Finally, we observe that Igc does not, in general, depend linearly on its
argument B owing to the use of stabilization.

Remark 3.2 (Conservative advection). A possible variant of (3.1) is to consider the conservative form of the
advective derivative. The PDE becomes V-(8p) = s in 2, and a Dirichlet boundary condition can still be
enforced at the inflow boundary. Assumption (81) is then modified as follows: There exists a real number

7 > 0 such that V-8 > 77! a.e. in . The discrete bilinear form then becomes

As(p.a) = [a, DV(E (p))] 2 + [0 Hlpmye (0°)] 50 (3.5)

The design of the discrete contraction and boundary Hodge operators still hinges on (I1)-(I2) and (H?).

Remark 3.3 (Reaction). Another possible variant is to include a zero-order reaction term in the PDE which
becomes B-Vp + up = s in Q with Lipschitz reaction coefficient p (the conservative form of the advective
derivative can also be considered). Then, the reaction-related bilinear form A,(p,q) = >, cv HoPvly is added

to the discrete problem, where p, denotes (for instance) the mean-value of p in &(v).
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3.2 Example: CDO scheme with upwinding

Let us give a concrete example for the CDO scheme (3.4). We introduce the notation
Be = (Rx(8)) ) = /f( B df,  VeeE (3.9)

We also set E, := {e € E|v € e} for all v € V, and V. := {v € V|v € e} for all e € E, and we use the
notation 1z =) = Lf(e) o) f(e) for the unit normal to f(e) pointing outward &(v). For all e € E and all
v € Ve, we fix a real number A,. € [—1,1] (the algebraic upwinding parameter) such that the following
holds: For all e € E,

(A1) > ev, Ave = 0, and setting A, := %Zveve Lf(e)ﬁ(U)Aye, BeAe > 0 holds.

(A2) There exists ¢y > 0, uniform with respect to the mesh and the model parameters, such that S.A. >

CA‘56|‘

The reason to distinguish the properties ScAc > 0 in (Al) and ScAe > cplBe| in (A2) is that the former
is satisfied by the so-called centered scheme corresponding to Aye = 0 for all v € V., and the latter by an
upwind scheme. Classical upwinding corresponds to the choice A, = sign(¢ F(e),5(v) Be) (with sign function
sign(t) = —1 if ¢ € R, sign(0) = 0, and sign(t) = 1 if ¢ € Ryg), so that (A2) holds with ¢y = 1. With
this choice, the solution delivered by the CDO scheme coincides with that of the upwind FV scheme on the
dual mesh.

The discrete contraction operator Ifagz & — C is defined such that, for all g € &,

Y 1
(I%C(g))g(v) = Z ge§(1 - Ave)ﬂea You € V, (3.10)
eckE,

while the companion operator IE; .V — F is defined such that, for all q € V,

7 1
(I};f<q))f(e) = Z qvi(l + Ave)ﬁev Ve € E. (3.11)
vEVe

Moreover, the discrete boundary Hodge operator H?, : V7 — FO with a € L>(09) is defined such that, for
all q? € V7,
(Hg(qa))fa(v) = q, /~6( )Oédf, Yo € V7. (3.12)
f

v

Observe that H? is algebraically represented by a diagonal matrix.

Remark 3.4 (Upwinding design). There are several possible variations in the geometric quantities considered
for upwinding. Instead of considering the full dual face f(e) as in (3.9), one possibility is to consider the
average of the normal advection velocity on the dual sub-faces fc(e), and to design the upwinding parameters
based on the sign of these quantities. In general, the smaller the underlying geometric objects, the larger
the dissipation introduced by upwinding. The advantage of considering the dual sub-faces fc(e) is that

upwinding is then compatible with the assembly of the scheme on primal cells.

Lemma 3.1 (Stability, (I1)-(12)). Let the discrete contraction and surface Hodge operators be given by (3.10)-
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(3.11)-(3.12). Assume (A1l). Then, (I1)-(12) hold with bilinear maps

[[p7 H—V -s\4 Z pqu/ —V-B dc, (3.13&)
veV (v)
P; upw B Z[[p]] e eﬁey (313b)
ecE

so that H‘i‘?v,ﬁ is algebraically TNepresented by a diagonal matriz, and where [qe = Y ,cv, Lf(e),a(v)dv is the
jump of q across the dual face f(e) for allq € V.

Remark 3.5 (First-order diffusion). Since [q]e = —(GRAD(q))e, the right-hand side of (3.13b) corresponds
to the jump penalty term considered in dG methods; for k = 0, it can be interpreted as adding a first-order

viscosity term.

Proof. Proof of (3.13a). Let v € V and let p,q € V. Using (3.10)-(3.11), we infer that

[[pv |£c GRAD(q Z Z Z Pvo’ Ly ) (1 = Ave)Be,

veEV e€E, v/ EV,

[[p,DIV - = Z Z Z Pudu’Lf(e) (v (1—|—Avxe)ﬁe.

veV e€E, v/ EVe

Using ty,e = =L () z(v): the definition of S, and (A1) leads to

[p.15°(GRAD(q))] 2 — [p. DIV(I ~ Y Y - / ) df-
veV ecE,
To conclude, we observe that if v € V\ V? 37 p ff(e) ﬂ'nf(e),a(v) df = fa&(v) By do¢ = fé(v) V-8B dé
owing to the divergence theorem, while for the boundary vertices, we use the definition (3.12) of the discrete

boundary Hodge operator to infer that
S opae 3 [ B = 3w [ VB e [0 My (a)]
vevo ecE, veVvo

Proof of (3.13b). Using (3.10)-(3.11), the definition of [-]., and the adjunction property between GRAD and
I5IV\/7 we infer that

[[p, |£c GRAD Z Z Pv qﬂe v - 1)/867
veEV e€E,

[a,DIV(1} => > [dl epv (1+ Aye)Be.
ecEveVe

Exchanging the summations in the first line leads to

[P, 15°(GRAD(a))] & + [a. DIV(E" (P)] e = > Y- [alepuAvebe.

ecEveEV,

Since Y, ey, PvAve = [P]eAe owing to (A1), we infer (3.13b). O

10
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3.3 Analysis: coercivity, consistency, and error bound

We define the following stability norm for all q € V:

sv =1 lall3y + llallipw,s + lalfan: (3.14)
18-

where 7 > 0 results from assumption (81), ||-||2,v is defined in Section 2.4, and we can define H\qwupw E

(4, 9)upw,s from assumption (I2), and |HqH||B,n| := [q°,H |ﬂ_n‘ ]](v%)f) from assumption (H?).

Lemma 3.2 (Coercivity and well-posedness). Under hypotheses (81), (I1)-(I2), and (H?), the following
holds:

olal?y < Ag(a,q),  VaqeV, (3.15)

with o = % Consequently, (3.4) is well-posed.
Proof. Let q € V. Since (I1)-(12) imply that
157 (GRAD(0))],2 = 5 [a. H % 5(0)] 2 + 5 (4 Ghupues + 5 [8° HY (@)
[a,15 Az = 3la-H5s(@]z + 5 (0 dupws + 5197 Han(a”)] 50,
we infer that the quantity Ag(q,q) can be rewritten as
1 Ve 1 L o o o o o o
As(a,q) = §[an—Vﬂ(q)]]vg +5 {0 Dupwp + 5[[61 yH3n(@)] 390 + [97, Higny - (a”)] 50
Owing to (H?), the last two terms on the right-hand side can be recombined to yield
1 Ve 1 1 9
As(0,0) = 3 [0, WS 5(0)] iz + 5 19 B + glalsn (3.16)

Since (I1) and (1) imply [q, Hﬁav,ﬁ(q)]] = > 77 qfl3, (3.15) holds and (3.4) is well-posed. O

Ve

We now turn to the consistency of the CDO scheme (3.4) using commutators in the spirit of Bossavit [12],
Hiptmair [28], and [9]. To write the consistency error, we consider the reduction map Ry : L'(©) — V such

that (Ry(p)), equals the mean-value of p in the dual cell &v), and the following three commutators:

15" R1(a) = Rz(Ba) ~ 15" (Rv(a)), (3.17a)
[HYS.5, R1(9) = R((—V-B)q) — H'S.5(Ru(0)), (3.17b)
U"(ﬁ.n)h m (q) = Rz »((Bn)Tq) — H?ﬂ.n)+((§V(q))8)7 (3.17¢)

for all ¢ € H*(Q2), s > %, so that ¢ is in the domain of the maps Rx and Rz,

Lemma 3.3 (Error bound). Let p € Vg(Q2) be the unique solution of (3.1) and let p be the unique solution
of (3.4). Assume p € H*(Q), s > % Then, under the assumptions of Lemma 3.2, the following holds:

olp =Ru(@)llay < sup  Ep(p.a), (3.18)
a€Villalla,y=1

with consistency error defined as follows:

~

Es(p.q) == [a. |H"% 5. RID)],; — [GRAD(Q). [177. RI0)],5 + [a”. Wy 1D 30 (3.19)

11
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Proof. Owing to Lemma, 3.2, it suffices to show that Ag(p— Ry (p),a) = Eg(p,q). In the context of Friedrichs’
systems, the derivation of the error bound hinges on integration by parts. In the CDO framework, we use

the continuous and discrete Leibniz formulas, as well as the properties of the discrete differential operators.
We observe that

= [a.R:(B-VD)] z + [a°, Rfa(( Pyno
= [a,Ra(V-(BD))] 2 + [a. Re(—(V-B)p)] ¢ + [a”, Rz ((B1)"p)] 500
= [a,DIV(R%(8p))],z + [a; R~(—(V-B)p)]]vg + [0”, Rz ((B1)"p)] 50
= —[GRAD(q),R=(Bp)] ;5 + [a,Re(—(V-B)p)] z + [a°, Rz ((B1)"P)] 500+

where we have used the continuous Leibniz formula (recall that p is in the graph space), the discrete
commuting property (2.2b), the fact that 3-n = (8-n)" —(8-n)~, and the discrete adjunction property (2.1).
Moreover, setting p = ﬁy(p), we observe that

As(B,q) = [a, 15 (GRAD(p ]]VC—i—[[q Hp.n)- (6°)] 30
= [a, DIV ()], + [, HYS6(B)] .z + [0 Hignys (6] 30
= —[GRAD(q), 15" ()], + [[q, HYSG.5 (8], + [0, Hogy (3°)] 350

where we have used the discrete Leibniz formula, assumption (H?) (linearity) together with 8-n = (8-n)* —

(B-n)~, and the discrete adjunction property (2.1). The conclusion is straightforward. O

Theorem 3.4 (Convergence rate). Assume (B1). Let Lg be the Lipschitz constant of B and assume that
Lg <171 Let the discrete contraction and surface Hodge operators be given by (3.10)-(3.11)-(3.12). Assume
(A1)-(A2). Let p be the unique solution of (3.1) and let p be the unique solution of (3.4). Assume that
p € HY(Q). Then, the following holds:

~ 1 101 1
olle = Rv(®)llay < (1817 + h272|V-Bly)h2|pl g1 (), (3.20)
with stability constant o defined in Lemma 3.2, |Bly := [B| (), and |V-Bly := |V B =)

Proof. We need to bound the three terms in the right-hand side of (3.19) for all q € V such that ||qf|.,y = 1.

A direct calculation shows that

[o: 15 R = a0 [ (-98) (0= (Rufp)) de

veV &(v

The definition of ﬁv together with the Poincaré inequality and the multiplicative trace inequality imply that

~ 1 —~
lg = (Ru(@)vllz2(ewy) + Rl — (Ru(@)vlz20e)) S Pew)lalm @) (3.21)

for all ¢ € H*(Q2) and all v € V. Hence, we infer that

1o, [H %5, RIO)T 3l S (72 llallow) (h2 72 [V-Bl)h2 pl a1 -

Turning to the second term in (3.19), a direct calculation using (A1), the fact that p is single-valued on

12
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f(e), and recalling the definition of 8. shows that

—[GRAD(q), [}, RI(»)] .z = S [ale 3 21+A /’ By (P — (Ru(p),) df, (3.22)

ecE VEV,

whence we infer using (3.21) and the fact that |A,| < 1 that

N[

I[GRAD(a), LI, R1(0)],.5] S (Zuqnz /ﬂe) B df) 18113 |plirs

ecE

Owing to the triangle inequality, Lemma 3.1, and (A2), we infer that

(Zuquz /f@ B df) < e ? lallupwys + (Zﬂquz ( /ﬂe) Bl df - w))

ecE ecE

NI

Let ¢ € C,; the local dual face f.(e) consists of two triangles, say f/.(e), each touching one of the two faces
[ of ¢ sharing e. Set d;.(e) := fff,c(e) ]B‘nff,c(eﬂ af — fff,c(e) Bng, (o df,so that

og@Aazzf

(IB'n~ e )_ df'
ff,c(e) ff,c( )

If (,(‘J’~nf~f78(e))_~ takes positive values on ff.(e), then 0 < &;.(e) < 2|3.|; otherwise, B-1, (e) vanishes at
some point in ff.(e). Then, using the fact that 8-n ; Fro(e) is Lipschitz in f + c(e) together with mesh regularity
leads to 0 < &7 .(e) < Lghe|ffe(e)]. Since ‘f ( )‘ f (), summing these bounds over ¢ € C, and the

faces f leads to

0< /f( ) |5‘nf(e)’ df_ ’/f( )ﬁ‘nf(e) df < Z‘Sf,c(e) < 1Bel +Lﬁhe|f(€)|-
(4 e f,C

-1

Using the assumption Lg < 77, mesh regularity, and the definition of the discrete norm ||-||2,y leads to

(Zﬂq / |ﬂ'nf<e>rdf) < lallupw
ecE

Finally, a direct calculation shows that

[o's e RI D o = 3 o [, (80 0= Rolo)) i

veEVO

so that |[q”, [Hl. n)+, ]}(VF | < lalljs. n|\,3]2h2 Pl 1(q)- This completes the proof. O

Remark 3.6 (Localization). The error estimate (3.20) can be localized to dual mesh cells.

4 Advection-diffusion

This section addresses the derivation and analysis of vertex-based CDO schemes for the advection-diffusion

problem (1.1). The diffusion tensor A takes symmetric, uniformly positive definite values. For simplicity,

13
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we assume that A is constant in each primal cell ¢ € C with minimal and maximal eigenvalues \, . and A .,
respectively, and local anisotropy ratio p. = Ag./A, . > 1. The analysis can be extended to locally Lipschitz

diffusion tensors.

4.1 Preliminaries: boundary penalty for pure diffusion

In this section, we consider the pure-diffusion version of the model problem (1.1) with 8 = 0:

—V:(AVp)=s ae.inQ, (4.1a)

p=pp a.e.on Of. (4.1b)

Formally, the weak formulation is as follows: For all ¢ € H(Q),

/ Vg A-VpdQ — / ¢(n-AVp) doQ + / nap doQ = / g5 dQ + / —re (4.2)
Q o2 o2 Q o2

with some boundary penalty parameter 7. It is also possible to consider a symmetric bilinear form on the
left-hand side. Symmetry is an important property when invoking duality arguments for pure diffusion
problems; it is also a relevant property when inverting the linear system. It is less important in the presence

of advection.

4.1.1 CDO scheme

The vertex-based CDO scheme with weakly enforced boundary conditions is formulated in terms of a discrete
Hodge operator H3” : £ — F , which is the discrete counterpart of the map g — A-g, and the discrete
boundary operators N3 : £ — Fo (normal flux) and Hi b V0 — FO (boundary penalty), which weakly
enforce boundary conditions & la Nitsche and which are the discrete counterparts of the maps g — n-A-g

and p — (A/h)p at the boundary, respectively. The discrete problem consists in finding p € V such that

Ak(pa q) = [[q,S]] Ve + [[qa7 d)Dﬂ (v})87 Vq € V) (43)

with bilinear form such that
Ax(p,q) := [GRAD(q), HY"GRAD(p)] z — [a”, NXGRAD(p)] 35 + 1m0 [a’, ﬁi/h(pa)]](v;)a, (4.4)

where 79 > 0 is a real number to be chosen large enough (see below), s = R5(s), and ¢p = Tloﬁi/h(Rva (pp))-
The bilinear form (4.3) extends that of [9] where the Dirichlet boundary condition was strongly enforced.

The discrete Hodge operator Hif; is assembled cell-wise from local operators Hgff)c : & — F. for all
c € C, so that

[[thg g2)] .z Z[[gl, ]](;)C (4.5)

ceC

for all g1, g2 € £. Similarly, the discrete normal flux operator N{ is assembled face-wise from local operators
Nif & — f? for all f € F?, where ¢ = ¢(f) is the primal cell containing the primal boundary face f, so
that

[0". N3 @] 390 = > [0”NY (@] 301 (4.6)

ferd

for all q° € V? and all g € £. Note that this implies that N3(g), for all g € £, only depends on the

14
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components of g attached to an edge of a cell having a boundary face. The discrete boundary penalty

operator ﬁf’\/h is such that, still with ¢ = ¢(f),

fer?

for all 92 € V? and all v € V?, where F) := {f € F?|v € f}. Note that H %/n Is algebraically represented by
a diagonal matrix.
4.1.2 Example

Let us give a concrete example of CDO scheme. We consider a reconstruction operator Lg, : £, — L*(c)

for all ¢ € C. The discrete Hodge operator in each cell ¢ € C is defined such that

[e1, HS 7 “(82)] /'—5 (81)-A-Le.(g2) de, (4.8)

for all g1, gs € &, while the discrete normal flux operator in each boundary face f € F? is defined as follows

(with ¢ = ¢(f) the primal cell containing f):

N (8) 720y = /f?(v) n-ALe.(g) df. (4.9)

for allv € V? and all g € £.. The reconstruction operator has to satisfy some properties stated in Lemma 4.1
below. One possibility is to consider the reconstruction proposed by Codecasa et al. [16], see also [9, 8],
whereby Lg,(g) is piecewise constant on each diamond d(e) N¢, e € E. (see Figure 2, left panel).

4.1.3 Design conditions

More generally, the design conditions on Hg‘ff)c are as follows: For all ¢ € C,

(H1) [Stability] Hgff)c is self-adjoint and monotone, and there exists ¢y > 0, uniform with respect to the

mesh and the model parameters, such that, for all g € &,

HE(@)] 5. < e MsellelBe, (4.10)

(H2) [Po-consistency] Rz (A-G) = Hgf%)c(Rgc(G)) for any constant field G in c.
The design conditions on Nif are as follows: For all f € F?, with ¢ = ¢(f),

(N1) [Boundedness| There exists ¢y, uniform with respect to the mesh and the model parameters, such
that, for all g € &,

2 %
S IR (N @)z < wdsehs? 8 HE @) 5, (4.11)

ve\/a

(N2) [Po-consistency] Rz, (n-A-G) = Nif(RgC(G)) for any constant field G in c.
f

Lemma 4.1 (Design conditions). Let the discrete Hodge and normal flux operators be defined by (4.8)

and (4.9), respectively. Assume that the reconstruction operator is such that:

15
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(i) [Stability] Le, (g) is a piecewise-polynomial function in ¢, and there exists ¢, > 0, uniform with respect

to the mesh-size, such that c g3 ¢, < ILe.(8)l72 () < ' lgl3e, for allg € Ee.
(ii) [Partition of unity] Lg.(Re,(G)) = G for any constant field G in c.

(iii) [Dual consistency] [, Le.(g) dc =Y cee. (J7,(0) ™) df)ge for all g € &..
Then, (H1)-(H2) and (N1)-(N2) hold.

Proof. For the proof of (H1)-(H2), see [9, 8, 16]. To prove (N1), fix f € F? and observe that

~ R 2 N@ _ ~ 2
S IR (N ©) ) = S 1770 ( Lo n-A-Lgc(g)df>

vev? vevfc’ f

< Z )‘ﬁ,cn)‘lﬂ Le, (g) ||i2(f8(v))
UEV? d

< Y Ml INLe(8)72
veVa

= Ctr#(vf))\ﬁ chﬁ 3 [[ga SF ]](gf

where we have used the Cauchy—Schwarz inequality followed by a discrete trace inequality with ¢ = ¢(f)
(since A is constant and Lg, (g) is a piecewise-polynomial) and the definition of the discrete Hodge operator.
This proves (N1) with ey = cu#(V}) (observing that the cardinal number #(V$) is uniformly bounded

owing to mesh regularity). Finally, letting G be a constant field in ¢, (N2) follows from

) _ .
NAf(R&(G))f;?(U) = /f;?(v) n-ALe(Re. (G))df = 20 n-AGdf = (Rf?(n.A.G))f?(v)a

for all v € V? owing to property (ii) of the reconstruction operator. O

4.1.4 Analysis

This section collects the main results concerning the analysis of the CDO scheme with boundary penalty.
To facilitate the reading, the proofs are postponed to Section 7. We define the following norms on £ and
V2 respectively:

lel3 = [g.H3 ()] Ma’l3/n = [a” H3/u(a")] ,50- (4.12)

Observe that these norms can be localized as ||g[l} = X ccllgcllX . with llgclX . = [gc; for all

gc)]
(Sf)
gc € &, and as |||q8|||)\/h = ZfeFaHquWA/hf with |||qf”|)\/hf = Mche ng\/8|ff( )|(qfv) fOT all CIf € Vf
The stability of the CDO scheme (4.3) is expressed in the following norm:

lall3,v == IGRAD()IX + lla’lI3 /. Va € V. (4.13)

Lemma 4.2 (Coercivity and well-posedness). Assume (H1) and (N1). Then, provided g > 1+ 3§, the
following holds:

ollalliy < Ax(a,q), VYaeV, (4.14)

with o = % Consequently, (4.3) is well-posed.

16
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We now address the consistency of the scheme (4.3). We assume that the exact solution p is in H*(2),
s > 3 (the regularity assumption can be localized to mesh cells), and we consider the (classical) de Rham

map Ry. We define the following two commutators:

[H§7. R1(Vp) := R=(A-Vp) — H§” (GRAD(Ry (p))), (4.15a)
NS, R1(Vp) := Rz, (n-A-Vp) — N3 (GRAD(Ry(p))). (4.15D)

Lemma 4.3 (Consistency). Let p be the unique solution of (4.1) and let p be the unique solution of (4.3).
Assume p € H*(Q2), s > % Then, under the assumptions of Lemma 4.2, the following holds:

ollp —Rv(p)llay < sup  Ex(p,q), (4.16)
a€Villglla,v=1
with consistency error
Ex(p,q) := [GRAD(q), [HY", RI(Vp)],z — [a”, INX, RI(VP)] (,30- (4.17)

Theorem 4.4 (Convergence rate). Let p be the unique solution of (4.1) and let p be the unique solution of
(4.3). Assume (H1)-(H2) and (N1)-(N2). Assume p € H?(). Then, the following holds:

M=

Ip — Ry (p)

”d,V S (Z Pc)\ﬁ,ch(23|p|%12(c)) . (418)

ceC

4.2 CDO Scheme for advection-diffusion

Vertex-based CDO schemes for the advection-diffusion problem (1.1) hinge on the discrete bilinear form
Agx := Ag + Ay with Ag defined by (3.5) and Ay by (4.4). The discrete problem consists in finding p € V
such that

A,@,)\(p7q) = [[qu]]vE + H:qaa d)D] (v})aa vq € V: (419)

with s = Rx(s) and ¢p = Rz, ((B'n) pp) + nolqi/h(RVa (pp)). The Tonti diagram of the vertex-based
CDO scheme (4.19) is presented in Figure 4. Variants, such as using the conservative form of the advective

derivative or including a reactive term, can be considered as well; see Remarks 3.2 and 3.3.

p? € V? |l«——p €V —— GRAD —|g €&

e ‘{ A 4
Fo | RHS 565[ DIV beF

Figure 4: Tonti diagram of the vertex-based CDO scheme for advection-diffusion with weakly enforced
boundary conditions

We define the stability norm on V as \quzd’v = |la|
defined by (3.14) and diffusion-related stability norm defined by (4.13).

2y + llallg, with advection-related stability norm

17
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Lemma 4.5 (Coercivity and well-posedness). Assume (81), (I1)-(12), and (H?) for the advection-related
terms together with (H1) and (N1) for the diffusion-related terms. Then, provided no > 1+ 1cf, the
following holds:

ollal2ay < Aga(a,a),  VaeV, (4.20)

with 0 = % Consequently, (4.19) is well-posed.
Proof. Combine Lemma 3.2 with Lemma 4.2. O

Lemma 4.6 (Error bound). Let p be the unique solution of (1.1) and let p be the unique solution of (4.19).
Assume p € H*(Q2), s > % Then, under the assumptions of Lemma 4.5, the following holds:

ollp = Ry(®)[lad,y < sup  Ega(p,a), (4.21)
acVillqllaa,v=1

with consistency error Eg x(p,q) = Eg(p,q) + Ex(p,q), with Eg(p,q) defined by (3.19) with Ry in lieu of Ry,
and Ex(p,q) defined by (4.17).

Proof. Combine Lemma 3.3 with Lemma 4.3 (note that H(2) C Vg(Q)). O

4.3 Example: CDO scheme with Péclet-based upwinding

For all e € E, we define the (algebraic) edge Péclet number as Pe, = AJ!|f(€)| ! Behe with Ae = maxcec, My,
Ce = {c € Cle C ¢}, and B, defined in Section 3.2. We then use (3.10)-(3.11) to define the discrete
contraction operators Igcv and IE; with Péclet-dependent upwinding parameter A, = O(¢ Fle),i(w) Pe.), where
the function © : R — R is such that

(01) O(z) +O(—z) =0 and O(z) > 0 for all z € Rx.

(©2) There exists a > 0 such that ©(x) > « for all z > 1 (the lower bound on z is arbitrary; changing its

value only changes the constants in the error bounds).

Note that (©1) implies (A1) since SeAe = %%ﬁ(e)' 2veVe Lie) o) PeeO (L j(¢) z(vyPee) = 0. Since (Al) holds,
Lemma 3.1 implies that (I1)-(I2) hold; hence, stability and well-posedness hold owing to Lemma 4.5. An
example for the function © is the Sharfetter-Gummel map ©(z) = coth (£) — 2, see Roos et al. [35] for
further insight and examples. The function © is related to the function |A| introduced in [19] in the context
of high-order face-based discretizations by the relation |A|(x) = 2O(x).

To write the error estimate, we introduce one last geometric object d(e), for all e € E, which is the
so-called diamond around e formed by the two pyramids of apex v € V, and (non-planar) basis f(e), see

Figure 2 (left panel). Note that Ueegd(e) = Q.

Theorem 4.7 (Convergence rate). Assume (B1). Let Lg be the Lipschitz constant of B and assume that
Lg < 771 Let the discrete contraction and surface Hodge operators be given by (3.10)-(3.11)-(3.12). For
the diffusion-related operators, assume (H1)-(H2) and (N1)-(N2). Let p be the unique solution of (1.1)
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and let p be the unique solution of (4.19). Assume p € H?(Q2). Then, the following holds:

1
2
ollp = Ru(®)ady S (Z pcAu,chE\p!%mc>)

ceC
2
+ (Z(T|Vﬂ|2mo(a(e))he + |Bnfge)he miﬂ(l,Pee)|P!§{1+(a(e))) : (4.22)
ecE

with |B-n

te = B1 5| Lo ey and [P+ oe)) = [Pl 0(e)) + PelPlm2(0(0)) -

Proof. The bound on the diffusion-related terms derived in Theorem 4.4 still holds. For the advection-
related terms, there are two adaptations from the proof of Theorem 3.4. The first one is that we consider
Ry(p) in lieu of Ry (p) since we are now bounding the error (p — Ry (p)). The approximation property (3.21),

which is now applied in the diamonds around edges, is then replaced by

1
lg = (Rv(@)olr2a(ey) + hé la — (Rv(@))ol p2(fiey) S Peldlm+ ey

for all ¢ € H*(), all e € E, and all v € V.. The second adaptation is related to the change in the ||[|upw.s
semi-norm owing to the use of Péclet-based upwinding. We bound again the three terms in the right-hand
side of (3.19) for all g € V such that ||qf|.q,y = 1. For the first term, we readily infer that

g, [H %5, RI(®)] 3] S (72 la

2
2.v) (Z T|V'/3|%°°(D(e))hg|p|§{1+(0(e))) :

ecE

Consider now the second term. Let Ev; := {e € E||Pe.|] > 1} and E<; := {e € E||Pe.| < 1}. The
summation in the right-hand side of (3.22) is split as 3.cp_, (") + > cep., (). Proceeding as in the proof of

Theorem 3.4, we infer that

Z(-)g(z [a]? /@ w-nﬂe)df) (Z |ﬂ-n|n,ehe|p|%1+<a<e>>> -

66E>1 66E>1 f CEE>1

For all e € E-j, property (©2) implies that A¢Se > «|Bc|. Then, still proceeding as in the proof of

Theorem 3.4, we infer that

1
2
_1
> ) 5 (lallupws + 72 lallz) ( > \ﬁ-nru,ehe|p|%1+@<e») -

ecE~q e€cE~q

Furthermore, we observe that

2

N[

f.e

Z () S ( Z [[q]]ghe)\e)

€€E§ 1 €€E§1

( > hA B

GGEgl

Belhe ’p‘%{u(a(e)))

Owing to mesh regularity, the definition of ., and (H1), we infer that the first factor in the right-hand side
1
is bounded by ||[GRAD(q)||x, while the second factor is bounded by (ZSGE |B-n|ﬁ’ehePee|p\§{1+(a(e))> * since
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AZHF (€)Y Belhe = |Pee| < 1 and |f(e)| < h2. Collecting the bounds on Yech, and > cp_, leads to

2
[[GRAD(q), 15", R1(0)] oz| < llallaa,y (Z |B-1lg,ehe min(1, Pee)\pléu(a(e))) :

ecE
Finally, the boundary term is bounded as before. O

Remark 4.1 (Limit regimes). In the advection-dominant regime with |Pe.| > 1 for all e € E, the error
bound (4.22) behaves as h'/? (see Theorem 3.4), while, in the diffusion-dominant regime with |Pe.| < he
for all e € E, it behaves as h (see Theorem 4.4). The case where h, < Pe, < 1 corresponds to transition

regimes and intermediate orders of convergence.

Remark 4.2 (Boundary term). It is also possible to modify the discrete boundary Hodge operator so as to

enforce the boundary condition using a Péclet-based upwinding; details are omitted for brevity.

5 Divergence-free advection

In this section, we extend the analysis to the case of a divergence-free velocity field 8 under assumption (82);
recall that this assumption provides a real number 7 > 0 and a function ¢ € W1*°(Q) such that ¢ > 1 a.e.
in Q. The advection-related stability norm ||-||,, is still defined by (3.14) (where now 7 results from (82)).
The only relevant change in the analysis is that stability (and well-posedness) is now achieved by means of
an inf-sup condition instead of a coercivity argument. Since consistency and boundedness hold in the same
form as before, inf-sup stability suffices to establish the error upper bounds, so that the convergence rates
derived in Theorem 3.4 for pure advection and in Theorem 4.7 for advection-diffusion still hold. In what
follows, we consider the non-dimensional numbers wg = Lg| BlghT and wy = Lg)\uT, with L¢ the Lipschitz

constant of ¢, |8y := |B]r>(q), and A\ := maxeec Mg e

5.1 Pure advection

Along with (I1)-(I2), we introduce a third property for the discrete contraction operators:

(I3) [Multiplication by (] There are ci, co, c3, uniform with respect to the mesh-size and the functions 3
and ¢, such that the following holds for all q € V:

I<allzpw,s + Callfs.ry < c16Z (lallzpw,s + llallipny) + c20sm lall3 (5.1a)
1
As(a,¢a) = Zlallzy — eswsAs(a, a), (5.1Db)
with (4 := (] Lo (@) and ¢q € V such that ({q), := ((v)q, for all v € V.

Lemma 5.1 (Inf-sup stability). Under hypotheses (82), (I1)-(12)-(13), and (H?), the following holds:

As(q,r
ollalloy < sup 2@ yo ey, (5.2)
U Yy

-1
with o = % (max(g‘ﬁ? + cowg, clgf)% + 03w5) )
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Proof. We take r = (q + cawsq € V. Owing to the triangle inequality, (5.1a), and the obvious bound
IiCall2,y < Gllall2,v, we infer that

1
Illay < I¢alay + cxwsllallay < (max(¢? + exws,1)F + caws) lallay-

Moreover, owing to (5.1b), we infer that

1
As(a,r) = Ag(a,(q) + cswsAs(a,q) > quwz,%
whence we infer (5.2). O

Remark 5.1 (Factor wg). An upper bound on wg yields a lower bound on ¢. A simple upper bound is to
replace h by a global length scale associated with 2 (i.e., h can be replaced by a global length scale in (5.1a)
and (5.1b)). A sharper bound is wg < L¢|B|y7 under the mild assumption L¢sh < 1 (meaning that h resolves

the scale of spatial variations of ().

We now verify property (I3) in the context of the CDO scheme with upwinding studied in Section 3.2.

Lemma 5.2 ((I3) with upwinding). Assume (82) and (A1). Let the discrete contraction and surface Hodge
operators be given by (3.10)-(3.11)-(3.12). Then, (I8) holds.

Proof. To prove property (5.1a), we observe that, for all q € V, since A > 0 for all e € E,

Kallipw,s = Do[CalzAcBe <23 ({CH2lal: + {a}2Ic]?) Acse.

eck ecE

where {(Be = 33 ev, C(0), [l = Soev, Lieyew)SW), fake = 33 vev, v, and [q]e is defined in
Lemma 3.1. Since 2{¢}? < 2{5 and [¢]? < (L¢he)?, we infer that

”quupw,ﬂ = 2<ﬁ |||q|||upw,,8 +2 Z Lghg{q}}gAeﬁe,
ecE

and we conclude using 0 < A8, < |,6|ﬁ|f(e)|, {q}? < %ZUGVE g2, and mesh regularity. Since, owing
o (3.12), ||qu|2ﬁ~n| < Cﬂ”q\”fﬁm, this completes the proof of (5.1a).

Proof of (5.1b). The idea of the proof consists of writing Ag(q, (q) in the form Asg(q,q) plus a perturbation
which can be bounded by the variations of (. A straightforward computation proceeding as in the proof of
Lemma 3.1 shows that Ag(q,{q) = T + Tp + T3 with

=3 / o df+ 35l QA&+Zm%(CWMCﬁ

UEVeEE eEE veVo

= Z Z q“ge/ C(v) = C fle) df+ Z Z 5YvEe Ce —((v ))Aveﬁev
veV e€E, (e) veV eGEv

L= Y [ (o) = OBn) df,
Ueva f (U

with g = GRAD(q) and (. the mean-value of ¢ in e. Since ¢ > 1, still proceeding as in the proof of
Lemma 3.1 and using now (82) leads to the bound 77 > %]”q]”ﬁv Furthermore, using Cauchy—Schwarz
inequalities, (A2), and mesh regularity, we obtain |15 < wglqlupw,s (7'7% llall2,v). Proceeding similarly leads
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_1 . . .
t0 T3]  wsllalpny(rllallz). Since Ag(a,q) = 2(lalZp s + Ial3.y) owing to (3.16), we infer that

1,1
| To| + | T3] S wpAgla, )2 (7 2[lall2,v),

and the conclusion follows using Young’s inequality. O

Remark 5.2 (Conservative advection). Using the conservative form of the advective derivative is also possible
under assumption (82). The above proofs are adapted by considering the function ¢’ = 1+ ||C]| =@ — ¢
which is bounded by [|(|| () and satisfies ¢’ > 1 and V-(¢'8) > 7~ a.e. in Q.

5.2 Advection-diffusion

As in Section 4.3, we consider the Péclet-dependent upwinding parameters A, = O(v F(e),5v) Pe.) under
assumptions (01)-(02). Recall that (©1) implies (Al).

Lemma 5.3 (Inf-sup stability). Assume (B82). Let the discrete contraction and surface Hodge opera-
tors be given by (3.10)-(3.11)-(3.12) with Péclet-dependent upwinding parameters under assumption (©1).

2 2
Assume (H1) and (N1) for the diffusion-related terms. Then, provided ny > % with ¢4 =
max (cswg, 2c5w3), ¢5 1= (2cﬁ1NV7E)%, Nv g being the mazimum number of edges touching a mesh vertez,
the following holds:
A )\(qa r)
ollallag,y < sup =2 Vg ey, (5.3)

ey [Irllag,v
with o = %(max(gﬁ2 + cowp + 2cBwy, c1(F, 2(]?)% +eq)

Proof. Set r := (q + ¢4q. Since (Al) holds, we infer from Lemma 5.2 that (I3) holds. Moreover, since
ca > cswg and Ag(q,q) > 0, Lemma 5.1 implies that

1
As(a,1) = Ag(a, Ca + cawpa) > ~llallz v (5-4)
Moreover, owing to (7.2) and to Lemma 5.4 below, we infer that

i 1
Ax(@,1) = (1 +ca)llglR — en(Ge + collglialallam — esw lgllar™2 llallzy +m0(L + ca)llall3 .

where we have set g = GRAD(q). Using Young’s inequality for the third term on the right-hand side yields

1 _
Ax(a:1) = llellx — en(G + collgllalallan +no(1 + collalyn — g7 lallzy,

since ¢4 > 205&1?\. Using the same quadratic identity as in Lemma 4.5, this time with v = %CN(Cﬁ + ¢4) and
1+2¢2 (¢y+c2) 5—~2

1
7(1+ca) Trs = § We

0 = no(1 4 ¢4), and observing that the choice ny > implies 6 > % + %’yz so that

infer that

1 1 _
Ax(a,r) = “llallgy — 37 Hlall3,y-

Combining this bound with (5.4) yields Aga(q,r) > %qugd’v. We conclude using ||r|laa v < [I¢qllad,y +

1
callallag,y and [[€allag,y < max(¢F + caws + 2cBwy, 167, 2¢7) 2 lallaa,v- 0

Remark 5.3 (n9). The lower bound for 7y obtained in Lemma 5.3 slightly differs, up to a numerical factor,
from that obtained in Lemma 4.2 for zero advection; the reason is that both proofs have not been optimized

regarding the lower bound in the quadratic identity.
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Lemma 5.4 (Multiplication by (). Assume that (H1) and (N1) hold. The following holds for all q € V
with g = GRAD(q):

< 2¢Fllally + 2¢3wam all3 v, (5.5a)
). (5.5b)

1 _1
Ax(a, ) lellx + molla’ll3,n — enGillglialla®lam — esws llglla (=2 lla

Proof. Proof of (5.5a). The definition of Ha/h implies that |||an]”)\/h = [¢q?, H)\/h(g‘q )]] pip < ¢ |”qaw)\/h

Furthermore, owing to the cell-wise assembly of the discrete Hodge operator H3” and using the triangle

inequality, we infer that

IGRAD(Cq)[} = 3 [GRAD.(¢q), HS*-GRAD.(¢a)]

ceC

= 3" 2¢2[GRAD,(q), S 7*-GRAD.(a)] 15, + 3 260
ceC ceC

< 2GZIGRAD()[I + > _ 20c(a)’

ceC

where (. is the value of ¢ at the barycenter of c and d.(q) := ||GRAD.(w)||x and w := (¢ — (.)q. The upper
bound in (H1), the definition of GRAD,. and that of the ||-[|2,¢,-norm yield

2
8e(q)” < Cﬁl)‘ﬁ,chc Z ( Z toe(C(v) — CC)Qv)

e€cE. \vEV,

<20y Mg LZhE D > Ay < 20y Ny pdgeLEfall3y,
eEEc Ueve

Combining the above bounds leads to (5.5a).
Proof of (5.5b). Using (N1), (7.1), and ¢ > 1, we infer that

Ax(a,¢a) = [GRAD(¢a), HY™-GRAD(q)] 3 — [(¢a)”, N-GRAD()] .50 + m0[(¢a)”, H3 /4 (a”)] 50
> [GRAD(¢q), HY"-GRAD(q)] .z — enlIGRAD(a) (|1l (Ca)? llx/n + molla®[I3, /5
> [GRAD(¢q), HY-GRAD(a)] .z — enG:IGRAD(a)Ixllallx/n + molla”l13 -

Moreover, owing to the cell-wise assembly of the discrete Hodge operator Hi’; and proceeding as above, we
infer that

[GRAD(q), HY -GRAD(q)] . = z(:} [GRAD.(¢q), H 5“ ‘GRAD(q)] .5,
ce
zmGRADmnﬁ—+§:[GRA04w»H§ﬂﬁGRA04qm@3C
ceC

Since Hg‘ff)c is self-adjoint and monotone, we infer that

[[GRAD,(w), H{7*-GRAD.(a)] 5, | < 6c()|GRAD.(a) ..
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so that

[N

[GRAD(¢q), HS”-GRAD(q)] .z > [GRAD(a) I3 — (Z 5c(q)2) IGRAD(q)][x-
ceC

Using the above bound on 6.(q) yields (5.5b). O

6 Numerical results

In this section, we investigate numerically CDO advection-diffusion schemes on four families of successively-
refined, polyhedral meshes of the unit cube Q = (0,1)3; see Figure 5 for an example of mesh within each

family. These mesh families have been proposed in the FVCA benchmark [24], see also [7].

Hexahedral (H) Skewed-polyhedral (SkP) Checkerboard (CB) Kershaw (K)

Figure 5: Polyhedral meshes

The error with respect to the exact solution p is measured using the following two quantities:

Ip — Rv(p)[lad,v
, Erryqy = :
© IRv(P)llad,v

~R
Frryy = Ip — Ry (p)ll2,v

0 IRv(@)ll2,v

In our numerical tests, the integrals for the source term and the boundary data are computed using a

fourth-order quadrature on elementary sub-simplices of each polyhedral cell.

6.1 Anisotropic diffusion and variable advection velocity

We consider the conservative form of the scheme (4.19), where the bilinear form Ag is given by (3.8). The
exact solution is p(z,y, z) = 1 + sin(7x) sin (7r (y + %)) sin (77 (z + %)), and the diffusive tensor A and the

velocity field B are equal to (in the canonical basis of R?)

1 05 0 y—1/2
A=[05 1 05], B=11/2—xz]|,
0 05 1 z

so that the velocity field satisfies hypothesis (81) for the conservative form (see Remark 3.2). We consider

the discrete contraction operator IE; built using full upwinding as in Section 3.2 and Péclet-based upwinding

as in Section 4.3 using the Sharfetter—Gummel map.
Figure 6 presents the numerical results, which reflect the theoretical analysis with convergence rates
between one and two. The use of Péclet-based upwinding leads to lower errors than full upwinding; the

improvement is more pronounced on the SkP mesh sequence than on the other sequences, and is observed

on the finer meshes.
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H sequence SkP sequence
T T T T Fr T T T LI
R N | s
:m \\\ | :'v . \\\
3| AN = 1073 ¢ A - E
T N T ]
S 10-3 AN i 3
~ 107? . N El A
& AN £
= [ NG 1 A el
101 h S ] 107t} S E
ol | | L | L
10? 10° 10* 10* 10°
#V #V
CB sequence K sequence
10~ pp— e ™ T T T T T
I ] 1071 |- —
2 2
£ £
51072 105
= =
£ 21072 E
2 o
G107t 1 &
1078 b .

Figure 6: Test case 6.1: Convergence curves for the two error measures on the four mesh families using full
upwinding (dashed lines) or Péclet-based upwinding (solid lines); first- and second-order slopes are indicated.

6.2 Exponential boundary layer with constant advection velocity

The second test case investigates the behavior of the CDO scheme in the presence of an exponential boundary
layer resulting from small diffusion. We consider an isotropic diffusive tensor, i.e. A = Ald, and a constant
vector field B with components (2, 3,0), so that assumption (32) is satisfied. The exact solution is p(z,y, z) =
(x — 5 )(y? — ew) and exhibits a boundary layer near =1 and y = 1 when A tends to 0.

Figure 7 reports numerical results for A\ = 1 (solid lines) and A = 10~* (dashed lines). Note that in
this second case, the considered meshes do not resolve the boundary layer. The transition between the two
convergence regimes as predicted by Theorem 4.7 is clearly visible. The present test case is also considered

by Da Veiga et al. [5] on the same SkP mesh sequence with a different scheme, where similar convergence

rates are reported but with somewhat larger error values.

7 Analysis of CDO schemes for pure diffusion

7.1 Proof of Lemma 4.2

Property (IN1) implies that, for all (q°,g) € V? x &,

[0" N3 @] 390 = 2 [aF NY ()l g = D D a7 (NX (&) jogy)

ferd feFaveV?
<en Y llatlansligcliae < enlla®lazliglia, (7.1)
ferd

where we have used the local assembly of N on the first line (with ¢ = ¢(f)), the discrete Cauchy—Schwarz

inequalities for the summations o and s, and the fact that ollgell? . < llgl|3 on the second
ver fer fer A,c A
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Figure 7: Test case 6.2: Convergence curves for the two error measures on the four mesh families using
Péclet-based upwinding for A = 1 (solid lines) and A = 10~ (dashed lines); half-, first-, and second-order

slopes are indicated.
line. As a result, we infer that

Ax(a,) = IGRAD(a)l3 — enlIGRAD(q)lxllall/n + mollall3 /- (7.2)

To conclude, we use the quadratic inequality z? — 2yxy + dy% > %(:ﬂ +4?) (valid for any real numbers

x,y,7,0 with § > 0) with v = %CN and § = 7y and observe that the choice g > 1+ %cﬁ, implies § > 14 2v?

so that % > 1. Finally, the well-posedness of (4.3) follows from (4.14).

7.2 Proof of Lemma 4.3

Owing to Lemma 4.2, it suffices to show that Ax(p — Ry(p),q) = Ex(p,q). To prove this, we observe that
[a.:5],z = —[a.Ro(V-(AVD))] z = ~[a, DIVRz(AVD))] 7 = [0°, R3 (n-A-VD)] 50,

owing to (2.2b), and we use (4.3) and (4.4) to conclude, as well as Rye(pp) = (Ry(p))?.

7.3 Proof of Theorem 4.4
Let T1,T, be the two terms in the right-hand side of (4.17). Recall that GRAD(Ry(p)) = Re(Vp). The

term 77 has already been bounded in [9]; we present here a somewhat simpler proof avoiding the algebraic

identity on the inverse of the discrete Hodge operator. Let G, denote the mean-value of Vp in ¢. Owing to
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the local assembly (4.5) and to (H2), we infer that

T = Y [GRAD.(q), R (A-Vp) — HE™* (Re, (Vp)]

EPe
ceC
= 3" [GRAD(a), Rz (A(Vp = Go))l 43, — 3 [GRAD(a), HS 7 (Re.(Vp — Go))] 5.
ceC ceC

and we denote by 771,712 the two terms in the right-hand side. The Cauchy—Schwarz inequality, mesh
regularity, and the lower bound in (H1) imply that

v
I

T1,1] < IGRAD(a)lx (Z > pedsche VD = Gelfy g,

ceC ecE,

2
< [IGRAD(q)|lA (Z pcka,chilplfm(c)) -

ceC

Similarly, the Cauchy—Schwarz inequality for Hg‘w})

&:) and the upper bound in (H1) imply that

e [21, MY ()] 45, < lealacllgalia for all g1, €

ceCecE, ceC

1 1
2 2
T12] S IGRAD(q) [Ix (Z > Asche|Vp - Gc\\%l(e)) S [IGRAD(a) Iz (Z Mchelplipa e ) :
Turning to 7%, we use the local assembly (4.6) and (N2) to infer that, with ¢ = ¢(f),

o]
Z [[qf7 ]:8 A vp) N)\f(Rgc(vp))]] (VJN-‘)?

feFo
= Z [[ny }-a (n-A-(Vp — G ))ﬂ(v})? Z [[qfa RSC(VP G. ))]](y})?v
fero fero

and we denote by 75 1 and T3 2 the two terms in the right-hand side. The Cauchy-Schwarz inequality implies
that

[NIE

Toal < 1l | 3 3 Auehi 199~ Gl o
fEFazJEVa

1
2
S la?liam (Z )\ﬁ,chz\l?’%ﬁ(c)) ;

fer?

while using (N1) and proceeding as above, we infer a similar bound on T5 5. The proof is complete since
pe > 1 by definition.
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