The number of maximal torsion cosets in subvarieties of tori - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

The number of maximal torsion cosets in subvarieties of tori

César Martínez
  • Fonction : Auteur
  • PersonId : 1203340

Résumé

We present sharp bounds on the number of maximal torsion cosets in a subvariety of the complex algebraic torus $\Gm^n$. Our first main result gives a bound in terms of the degree of the defining polynomials. A second result gives a bound in terms of the toric degree of the subvariety. As a consequence, we prove the conjectures of Ruppert and of Aliev and Smyth on the number of isolated torsion points of a hypersurface. These conjectures bound this number in terms of the multidegree and the volume of the Newton polytope of a polynomial defining the hypersurface, respectively.
Fichier principal
Vignette du fichier
Torsion.pdf (428.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01140886 , version 1 (09-04-2015)
hal-01140886 , version 2 (10-06-2015)
hal-01140886 , version 3 (17-11-2015)

Identifiants

  • HAL Id : hal-01140886 , version 3

Citer

César Martínez. The number of maximal torsion cosets in subvarieties of tori. 2015. ⟨hal-01140886v3⟩
93 Consultations
221 Téléchargements

Partager

More